1
|
Kaynarca GB, Yağcilar Ç, Kamer DDA, Gümüş T, Çetin İ, Koç ST. Gelatins derived from aronia-supplemented fish diets: Structural effect and molecular simulation. Int J Biol Macromol 2025; 295:139623. [PMID: 39798730 DOI: 10.1016/j.ijbiomac.2025.139623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Fish gelatin, a sustainable substitute for mammalian gelatin, frequently exhibits weaker gel strength and thermal stability, limiting its industrial uses. This study investigated an in vivo method to improve functional characteristics by supplementing Nile tilapia diets with Aronia extract. The control diet (A0) contained no Aronia extract, while the remaining four diets consisted of commercial pelleted feed enriched with 250 mg/kg (A250), 500 mg/kg (A500), 750 mg/kg (A750), and 1000 mg/kg (A1000) of Aronia extract. The gelatin samples revealed thermo-reversible behavior with increasing temperature. A250 exhibited the highest melting temperature of 29.65 °C, compared to 27.43 °C for A0. The gelation temperature for A250 was 17.56 °C, indicating a relatively stable gelatin structure. The elastic modulus (G') was the highest in A250, suggesting an improved gel network compared to the other samples. The gelation rate constant (kgel) was highest in A250 (540.67 Pa), followed by A750 (447.32 Pa), A500 (393.85 Pa), and A1000 (370.97 Pa), compared to 391.15 Pa for A0. The gel strength was improved, with A250 showing the highest value at 133.9 g, followed by A750, A1000, and A500, while A0 was 102.1 g. The glass transition temperatures (Tg) for A250, fish gelatin (FG), bovine gelatin (BG), and A0 were 76.72 °C, 74.31 °C, 70.71 °C, and 73.52 °C, respectively. Molecular docking studies revealed strong binding interactions between A250 and phenolic compounds, which contributed to the observed structural enhancements. These findings suggest that supplementing fish diets with Aronia extract can substantially enhance gelatin quality, offering a promising alternative to traditional gelatin sources.
Collapse
Affiliation(s)
- Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Turkey
| | - Çetin Yağcilar
- Department of Hydrobiology, Faculty of Arts and Sciences, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Deniz Damla Altan Kamer
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey
| | - Tuncay Gümüş
- Department of Food Engineering, Faculty of Agriculture, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey.
| | - İsmail Çetin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Serim Tuna Koç
- Department of Biotechnological Genetics, Institute of Science, Trakya University, Edirne, Turkey
| |
Collapse
|
2
|
Wang K, Zhan S, Yang J, Lou Q, Huang T. Investigation of Emulsifying Properties and Stability of Fish Gelatin and Tea Saponin Complex Emulsion System. J Texture Stud 2025; 56:e70016. [PMID: 40176359 DOI: 10.1111/jtxs.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025]
Abstract
In this study, environmental stability, rheological properties, and structural characterization of co-stabilized emulsions using fish gelatin (FG) and tea saponin (TS) were investigated. The results demonstrated that the addition of TS significantly enhanced the emulsifying properties of FG, and the FG-TS0.1% emulsion had the smallest particle size. TS and FG co-stabilized emulsions provided resistance to salt and high temperatures. Optical microscopy and CLSM showed that the addition of TS made FG more effectively adsorb at the oil-water interface, leading to the formation of more uniform oil droplet sizes. Additionally, the addition of TS increased the viscosity of FG emulsions, which reduced emulsion flocculation. Results of intrinsic fluorescence, FTIR, and surface hydrophobicity revealed that the addition of TS altered the secondary structure of FG, enhancing surface hydrophobicity and improving emulsification. In conclusion, the moderate addition of TS significantly enhanced the emulsification and rheological properties of FG, suggesting new potential applications for FG in various industries.
Collapse
Affiliation(s)
- Kaixuan Wang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Shengnan Zhan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Jianyuan Yang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiaoming Lou
- College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Tao Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Su XN, Khan MF, Xin-Ai, Liu DL, Liu XF, Zhao QL, Cheong KL, Zhong SY, Li R. Fabrication, modification, interaction mechanisms, and applications of fish gelatin: A comprehensive review. Int J Biol Macromol 2025; 288:138723. [PMID: 39672411 DOI: 10.1016/j.ijbiomac.2024.138723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Fish gelatin (FG) is an essential natural biopolymer isolated from aquatic sources and has been considered as a feasible substitute for mammalian gelatins. However, its inferior mechanical and gelling properties limit its applications. Consequently, FG has been modified using various methods. This review summarizes the extraction techniques (including traditional acid and alkaline methods, as well as newer technologies such as ultrasonic-assisted and microwave-assisted extraction), modification strategies (mechanical treatments, physical mixing with polysaccharides, utilization of the Hofmeister effect, chemical modifications, etc.), along with their mechanisms of action. Additionally, we discussed the applications of FG and its modified products. Furthermore, this review highlights the safety and prospects for FG and its derivatives. The mechanical properties and biological functions of FGs are enhanced after modification. Thus, modified FG composites exhibit diverse applications in areas such as foaming agents and emulsifiers, food packaging, three-dimensional printing, drug delivery systems and tissue engineering. This paper aims to provide comprehensive information for future research on FG with the intention of broadening its applicability within the industries of food, cosmetics, and pharmaceuticals. Nevertheless, the development of tough gels, aerogels, and stimuli-responsive hydrogels based on FG requires further investigation.
Collapse
Affiliation(s)
- Xian-Ni Su
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Muhammad Fahad Khan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xin-Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Dan-Lei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Qiao-Li Zhao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China.
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China.
| |
Collapse
|
4
|
Bahgat NT, Wilfert P, Eustace SJ, Korving L, van Loosdrecht MCM. Phosphorous speciation in EPS extracted from Aerobic Granular Sludge. WATER RESEARCH 2024; 262:122077. [PMID: 39018582 DOI: 10.1016/j.watres.2024.122077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Wastewater treatment technologies opened the door for recovery of extracellular polymeric substances (EPS), presenting novel opportunities for use across diverse industrial sectors. Earlier studies showed that a significant amount of phosphorus (P) is recovered within extracted EPS. P recovered within the extracted EPS is an intrinsic part of the recovered material that potentially influences its properties. Understanding the P speciation in extracted EPS lays the foundation for leveraging the incorporated P in EPS to manipulate its properties and industrial applications. This study evaluated P speciation in EPS extracted from aerobic granular sludge (AGS). A fractionation lab protocol was established to consistently distinguish P species in extracted EPS liquid phase and polymer chains. 31P nuclear magnetic resonance (NMR) spectroscopy was used as a complementary technique to provide additional information on P speciation and track changes in P species during the EPS extraction process. Findings showed the dominance of organic phosphorus and orthophosphates within EPS, besides other minor fractions. On average, 25% orthophosphates in the polymer liquid phase, 52% organic phosphorus (equal ratio of mono and diesters) covalently bound to the polymer chains, 16% non-apatite inorganic phosphorus (NAIP) precipitates mainly FeP and AlP, and 7% pyrophosphates (6% in the liquid phase and 1% attached to the polymer chains) were identified. Polyphosphates were detected in initial AGS but hydrolyzed to orthophosphates, pyrophosphates, and possibly organic P (forming new esters) during the EPS extraction process. The knowledge created in this study is a step towards the goal of EPS engineering, manipulating P chemistry along the extraction process and enriching certain P species in EPS based on target properties and industrial applications.
Collapse
Affiliation(s)
- Nouran T Bahgat
- Wetsus, European Centre Of Excellence for Sustainable Water Technology, Oostergoweg 7, 8911 MA, Leeuwarden, the Netherlands; Dept. Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| | - Philipp Wilfert
- Dept. Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Stephen J Eustace
- Dept. Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Leon Korving
- Wetsus, European Centre Of Excellence for Sustainable Water Technology, Oostergoweg 7, 8911 MA, Leeuwarden, the Netherlands
| | - Mark C M van Loosdrecht
- Dept. Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Wang Y, Cui Q, Wang X, Wu C, Xu X, Dong X, Pan J. The gelling properties of fish gelatin as improved by ultrasound-assisted phosphorylation. Food Chem 2024; 449:139214. [PMID: 38581790 DOI: 10.1016/j.foodchem.2024.139214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
This study investigated the effects of ultrasound-assisted phosphorylation on gelling properties of fish gelatin (FG). Ultrasound-assisted phosphorylation (UP) for 60, 90, and 120 min resulted in >6.54% increase of phosphorylation degree and decreased zeta potential of FG. Atomic force microscopy revealed that UP-FGs showed larger aggregates than P-FGs (normal phosphorylation FGs). Low frequent-NMR and microstructure analysis revealed that phosphorylation enhanced water-binding capability of FG and improved the gel networks. However, UP60 had the highest gel strength (340 g), gelling (17.96 °C) and melting (26.54 °C) temperature while UP90 and UP120 showed slightly lower of them. FTIR analysis indicated thatβ-sheet and triple helix content increased but random coil content decreased in phosphorylated FGs. Mass spectrometry demonstrated phosphate groups mainly bound to serine, threonine and tyrosine residues of FG and UP-FG exhibited more phosphorylation sites. The study showed that mild phosphorylation (UP60) could be applied to improve FG gel properties.
Collapse
Affiliation(s)
- Yong Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Qinan Cui
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuqin Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Caiyun Wu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinfeng Pan
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Mušič B, Pečnik JG, Pondelak A. Stabilization of Fish Protein-Based Adhesive by Reduction of Its Hygroscopicity. Polymers (Basel) 2024; 16:2195. [PMID: 39125221 PMCID: PMC11314626 DOI: 10.3390/polym16152195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Protein-based fish adhesives have historically been used in various bonding applications; however, due to the protein's high affinity for water absorption, these adhesives become destabilized in high-moisture environments, resulting in reduced bondline strength and early failure. This limitation makes them unsuitable for industrial applications with higher demands. To address this issue, water-insoluble raw powder materials such as iron, copper, or zeolite were incorporated into natural fish adhesives. In this study, the hygroscopicity, dry matter content, thermal analysis (TGA/DSC), FT-IR spectroscopy, surface tension measurements, vapour permeability, and scanning electron microscope (SEM) of the modified adhesives were determined. In addition, the bonding properties of the modified adhesives were evaluated by the tensile shear strength of the lap joints, and mould growth was visually inspected. The resulting modified protein-based adhesives demonstrated improved stability in high humidity environments. Enhancing the hygroscopic properties of protein-based fish adhesives has the potential to unlock new opportunities and applications, providing a healthier and more environmentally sustainable alternative to petroleum-based adhesives.
Collapse
Affiliation(s)
- Branka Mušič
- Slovenian National Building and Civil Engineering Institute, Dimičeva Ulica 12, 1000 Ljubljana, Slovenia;
| | | | - Andreja Pondelak
- Slovenian National Building and Civil Engineering Institute, Dimičeva Ulica 12, 1000 Ljubljana, Slovenia;
| |
Collapse
|
7
|
Guo H, Zhou Y, Xie Q, Chen H, Zhang M, Yu L, Yan G, Chen Y, Lin X, Zhang Y, Hong Z. Protective Effects of Laminaria japonica Polysaccharide Composite Microcapsules on the Survival of Lactobacillus plantarum during Simulated Gastrointestinal Digestion and Heat Treatment. Mar Drugs 2024; 22:308. [PMID: 39057417 PMCID: PMC11277663 DOI: 10.3390/md22070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
To improve probiotics' survivability during gastrointestinal digestion and heat treatment, Lactobacillus plantarum was microencapsulated by spray-drying using Laminaria japonica polysaccharide/sodium caseinate/gelatin (LJP/SC/GE) composites. Thermogravimetry and differential scanning calorimetry results revealed that the denaturation of LJP/SC/GE microcapsules requires higher thermal energy than that of SC/GE microcapsules, and the addition of LJP may improve thermal stability. Zeta potential measurements indicated that, at low pH of the gastric fluid, the negatively charged LJP attracted the positively charged SC/GE, helping to maintain an intact microstructure without disintegration. The encapsulation efficiency of L. plantarum-loaded LJP/SC/GE microcapsules reached about 93.4%, and the survival rate was 46.9% in simulated gastric fluid (SGF) for 2 h and 96.0% in simulated intestinal fluid (SIF) for 2 h. In vitro release experiments showed that the LJP/SC/GE microcapsules could protect the viability of L. plantarum in SGF and release probiotics slowly in SIF. The cell survival of LJP/SC/GE microcapsules was significantly improved during the heat treatment compared to SC/GE microcapsules and free cells. LJP/SC/GE microcapsules can increase the survival of L. plantarum by maintaining the lactate dehydrogenase and Na+-K+-ATPase activity. Overall, this study demonstrates the great potential of LJP/SC/GE microcapsules to protect and deliver probiotics in food and pharmaceutical systems.
Collapse
Affiliation(s)
- Honghui Guo
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Yelin Zhou
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- College of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
| | - Quanling Xie
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Hui Chen
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Ming’en Zhang
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
| | - Lei Yu
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
| | - Guangyu Yan
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
| | - Yan Chen
- Haijia Flour Milling Company Limited, China Oil & Foodstuffs Corporation, Xiamen 361026, China
| | - Xueliang Lin
- Haijia Flour Milling Company Limited, China Oil & Foodstuffs Corporation, Xiamen 361026, China
| | - Yiping Zhang
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| | - Zhuan Hong
- Engineering Technology Innovation Center for the Development and Utilization of Marine Living Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (H.C.); (M.Z.); (Y.Z.)
- Xiamen Ocean Vocational College, Xiamen 361100, China; (L.Y.); (G.Y.)
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan 350400, China
| |
Collapse
|
8
|
Chen Y, Chen X, Luo S, Chen T, Ye J, Liu C. Complex bio-nanoparticles assembled by a pH-driven method: environmental stress stability and oil-water interfacial behavior. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1971-1983. [PMID: 37897157 DOI: 10.1002/jsfa.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Protein-based nanoparticles have gained considerable interest in recent years due to their biodegradability, biocompatibility, and functional properties. However, nanoparticles formed from hydrophobic proteins are prone to instability under environmental stress, which restricts their potential applications. It is therefore of great importance to develop green approaches for the fabrication of hydrophobic protein-based nanoparticles and to improve their physicochemical performance. RESULTS Gliadin/shellac complex nanoparticles (168.87 ~ 403.67 nm) with various gliadin/shellac mass ratios (10:0 ~ 5:5) were prepared using a pH-driven approach. In comparison with gliadin nanoparticles, complex nanoparticles have shown enhanced stability against neutral pH, ions, and boiling. They remained stable under neutral conditions at NaCl concentrations ranging from 0 to 100 mmol L-1 and even when boiled at 100 °C for 90 min. These nanoparticles were capable of effectively reducing oil-water interfacial tension (5 ~ 11 mNm-1 ) but a higher amount of shellac in the nanoparticles compromised their ability to lower interfacial tension. Moreover, the wettability of the nanoparticles changed as the gliadin/shellac mass ratio changed, leading to a range of three-phase contact angles from 52.41° to 84.85°. Notably, complex nanoparticles with a gliadin/shellac mass ratio of 8:2 (G/S 8:2) showed a contact angle of 84.85°, which is considered suitable for the Pickering stabilization mechanism. Moreover, these nanoparticles exhibited the highest emulsifying activity of 52.42 m2 g-1 and emulsifying stability of 65.33%. CONCLUSIONS The findings of the study revealed that gliadin/shellac complex nanoparticles exhibited excellent resistance to environmental stress and demonstrated superior oil-water interfacial behavior. They have strong potential for further development as food emulsifiers or as nano-delivery systems for nutraceuticals. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Xu J, Tu Z, Wang H, Hu Y, Wen P, Huang X, Wang S. Discrimination and characterization of different ultrafine grinding times on the flavor characteristic of fish gelatin using E-nose, HS-SPME-GC-MS and HS-GC-IMS. Food Chem 2024; 433:137299. [PMID: 37660600 DOI: 10.1016/j.foodchem.2023.137299] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Three different methods were used to identify and analyze the flavor of fish gelatin with different ultrafine grinding time (0, 2, 4 and 8 h). The results of electronic nose showed that overall flavor of the samples changed. HS-SPME-GC-MS identified 65 volatile compounds, including 18 aldehydes, 7 ketones, 7 alkanes, 11 alcohols, 8 esters, 7 phenols, and 7 acids. HS-GC-IMS identified 46 volatile compounds, including 21 aldehydes, 5 ketones, 5 alcohols, 6 esters, 7 acids, 1 ether, and 1 amine. The particle size analysis results indicate that the size distribution decreases from 918.97-1167.16 and 1388.81-1780.40 nm to 157.63-177.37 and 285.90-344.55 nm with the increased of grinding time. The SEM analysis results indicate that the change in flavor characteristics of FG is due to the different storage and release abilities of volatile compounds in FG with different particle sizes.
Collapse
Affiliation(s)
- Jinghong Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoliang Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
10
|
Wang C, Ma M, Wei Y, Zhao Y, Lei Y, Zhang J. Effects of CaCl 2 on 3D Printing Quality of Low-Salt Surimi Gel. Foods 2023; 12:foods12112152. [PMID: 37297396 DOI: 10.3390/foods12112152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In order to develop low-salt and healthy surimi products, we limited the amount of NaCl to 0.5 g/100 g in this work and studied the effect of CaCl2 (0, 0.5, 1.0, 1.5, and 2.0 g/100 g) on the 3D printing quality of low-salt surimi gel. The results of rheology and the 3D printing showed that the surimi gel with 1.5 g/100 g of CaCl2 added could squeeze smoothly from the nozzle and had good self-support and stability. The results of the chemical structure, chemical interaction, water distribution, and microstructure showed that adding 1.5 g/100 g of CaCl2 could enhance the water-holding capacity and mechanical strength (the gel strength, hardness, springiness, etc.) by forming an orderly and uniform three-dimensional network structure, which limited the mobility of the water and promoted the formation of hydrogen bonds. In this study, we successfully replaced part of the salt in surimi with CaCl2 and obtained a low-salt 3D product with good printing performance and sensory properties, which could provide theoretical support for the development of healthy and nutritious surimi products.
Collapse
Affiliation(s)
- Chaoye Wang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Mengjie Ma
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Yunfeng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi 832003, China
| |
Collapse
|
11
|
He J, Zhang J, Xu Y, Ma Y, Guo X. The Structural and Functional Differences between Three Species of Fish Scale Gelatin and Pigskin Gelatin. Foods 2022; 11:foods11243960. [PMID: 36553702 PMCID: PMC9777772 DOI: 10.3390/foods11243960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
In this paper, gelatin was extracted from the scales of Coregonus peled, Carp and Bighead carp by the acid method, and the structure and functional properties of the obtained scale gelatin and food-grade pigskin gelatin (FG) were compared. The results showed that all gelatins exhibited relatively high protein (86.81-93.61%), and low lipid (0.13-0.39%) and ash (0.37-1.99%) contents. FG had the highest gel strength, probably because of its high proline content (11.96%) and high average molecular weight distribution. Low β-antiparallel was beneficial to the stability of emulsion, which led FG to have the best emulsifying property. The high content of hydrophobic amino acids may be one of the reasons for the superior foaming property of Bighead carp scales gelatin (BCG). The gel strength of Carp scales gelatin (CG) and BCG, the ESI of Coregonus peled scales gelatin (CPG) and the foaming property of BCG indicate that fish gelatin has the potential to be used in food industry as a substitute for pig skin gelatin.
Collapse
|