1
|
Ayed A, Caputo L, De Feo V, Elshafie HS, Fratianni F, Nazzaro F, Hamrouni L, Amri I, Mabrouk Y, Camele I, Polito F. Antimicrobial, anti-enzymatic and antioxidant activities of essential oils from some Tunisian E ucalyptus species. Heliyon 2024; 10:e34518. [PMID: 39113961 PMCID: PMC11303996 DOI: 10.1016/j.heliyon.2024.e34518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Many plants can produce essential oils (EOs), having various biological properties. This study evaluated the antioxidant, anti-enzymatic and antimicrobial effects of the EOs derived from leaves of Eucalyptus cladocalyx, E. angulosa, E. microcorys, E. ovata, E. diversicolor, E. saligna, E. sargentii and E. resinifera. The antioxidant activity of the EOs was carried out with three different methods (ABTS, DPPH and FRAP). In addition, their anti-colinesterases, anti α-amylase and anti α-glucosidase effects were assessed by spectrophotometric assays. The antimicrobial activities were tested against six phytopathogenic bacterial strains, including two G + ve (Bacillus mojavensis and Clavibacter michiganensis) and four G-ve (Pseudomonas fluorescence, P. syringae, Xanthomonas campestris and E. coli). The current study has also investigated the inhibition of biofilm formation and the possible effect on bacterial cells biofilm metabolism of three Gram-negative (Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii) and two Gram-positive pathogenic bacteria (Staphylococcus aureus and Listeria monocytogenes). The ABTS and DPPH tests indicated that E. diversicolor and E. saligna EOs showed high antioxidant activities, whereas FRAP test suggested that E. diversicolor EO exhibited the better antioxidant activity. E. resinifera and E. ovata EOs were the most active against cholinesterases instead E. ovata and E. sargentii EOs were more active against enzymes involved in diabetes. Antibacterial assays revealed that E. ovata and E. saligna EOs possess significant activity closely to tetracycline. Whereas, the antifungal assay revealed that all EOs have effectively suppressed the tested fungal growth. E. saligna EO showed substantial efficacy inhibiting both the mature biofilm (85.40 %) and metabolic activities (89.80 %) of L. monocytogenes. These results demonstrate the wide range of possible uses for Eucalyptus EOs in both agriculture and medicine fields, suggesting potential uses as strong antibiofilm agents and for biocontrol of phytopathogens.
Collapse
Affiliation(s)
- Amira Ayed
- Laboratory of Biotechnology and Nuclear Technology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, Sidi Thabet 2020, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Sidi Thabet 2020, Tunisia
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Hazem S. Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | | | - Filomena Nazzaro
- Institute of Food Science, ISA-CNR, Via Roma, 64, 83100 Avellino, Italy
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, Sidi Thabet 2020, Tunisia
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center for Nuclear Sciences and Technologies (CNSTN), Sidi Thabet Technopark, Sidi Thabet 2020, Tunisia
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
2
|
Choi JH, Park SM, Kim S. Investigation of Potential cGMP-Specific PDE V and Aminopeptidase N Inhibitors of Allium ampeloprasum L. and Its Bioactive Components: Kinetic and Molecular Docking Studies. Int J Mol Sci 2023; 24:13319. [PMID: 37686129 PMCID: PMC10488055 DOI: 10.3390/ijms241713319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The primary objectives of this study were to assess the inhibitory effects of Allium ampeloprasum L. extract (AAE) and its derived organosulfur and polyphenolic compounds on the enzymatic activities of cGMP-specific PDE V (PDE5) and aminopeptidase N (APN). Additionally, the study aimed to investigate their potential as inhibitors against these two target enzymes through kinetic analyses and molecular docking studies. The in vitro enzyme assays demonstrated that both AAE and its derived compounds significantly decreased the activity of PDE5 and APN. Further analyses involving kinetics and molecular docking provided insights into the specific inhibitor types of AAE and its derived compounds along with the proposed molecular docking models illustrating the interactions between the ligands (the compounds) and the enzymes (PDE5 and APN). In particular, AAE-derived polyphenolic compounds showed relatively stable binding affinity (-7.2 to -8.3 kcal/mol) on PDE5 and APN. Our findings proved the potential as an inhibitor against PDE5 and APN of AAE and AAE-derived organosulfur and polyphenolic compounds as well as a functional material for erectile dysfunction improvement.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea;
| | | | - Seung Kim
- Department of Health Functional Food, Gwangju University, Gwangju 61743, Republic of Korea;
| |
Collapse
|
3
|
Munim Twaij B, Jameel Ibraheem L, Al-Shammari RHH, Hasan M, Akter Khoko R, Sunzid Ahomed M, Prodhan SH, Nazmul Hasan M. Identification and characterization of aldehyde dehydrogenase (ALDH) gene superfamily in garlic and expression profiling in response to drought, salinity, and ABA. Gene 2023; 860:147215. [PMID: 36709878 DOI: 10.1016/j.gene.2023.147215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
In response to biotic and abiotic stressors, aldehydes are detoxified and converted to carboxylic acids by aldehyde dehydrogenases (ALDHs), which are enzymes that use NAD+/NADP+ as cofactors. Garlic (Allium sativum L.) has not yet undergone a systematic examination of the ALDH superfamily, despite the genome sequence having been made public. In this investigation, we identified, characterized, and profiled the expression of the garlic ALDH gene family over the entire genome. The ALDH Gene Nomenclature Committee (AGNC) classification was used to classify and name the 34 ALDH genes that were discovered. Except for chromosome 8, all AsALDH genes were dispersed across the chromosomes. AsALDH genes have various localizations, according to predictions about subcellular localization. The AsALDH proteins are more varied and closely related to rice than to Arabidopsis, according to a study of conserved motifs and phylogenetic relationships. The presence of stress modulation pathways is indicated by the abundance of stress-related cis-elements in the AsALDH genes' promoter regions. Analysis of the RNA-seq data showed that AsALDHs expressed differently in various tissues and at various developmental stages. Nine AsALDHs were chosen for study using RT-qPCR, and the results revealed that the majority of the genes were upregulated in response to ABA and downregulated in response to salinity and drought. The results of this study improved our knowledge of the traits, evolutionary background, and biological functions of AsALDHs genes in growth and development.
Collapse
Affiliation(s)
- Baan Munim Twaij
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq.
| | | | | | - Mahmudul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Roksana Akter Khoko
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Md Sunzid Ahomed
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Shamsul H Prodhan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
4
|
Nazzaro F, Polito F, Amato G, Caputo L, Francolino R, D’Acierno A, Fratianni F, Candido V, Coppola R, De Feo V. Chemical Composition of Essential Oils of Bulbs and Aerial Parts of Two Cultivars of Allium sativum and Their Antibiofilm Activity against Food and Nosocomial Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11060724. [PMID: 35740131 PMCID: PMC9219697 DOI: 10.3390/antibiotics11060724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
This work aimed to evaluate the chemical composition of the essential oils (EOs) of two cultivars of Allium sativum and their antibiofilm activity against the food pathogens Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus. The crystal violet assay ascertained the susceptibility of the bacterial biofilms, while the MTT assay let to evaluations of the metabolic changes occurring in the bacterial cells within biofilms. Their chemical composition indicated some sulfuric compounds (i.e., allicin, diallyl disulfide, and allyl propyl disulfide), and decene as some of the main components of the EOs. The aerial parts and bulbs’ EOs from the two cultivars showed chemical differences, which seemed to affect the antibiofilm activity. The EOs from aerial parts of ‘Bianco del Veneto’ inhibited the biofilm formation of L. monocytogenes and E. coli (60.55% and 40.33%, respectively). In comparison, the ‘Staravec’ EO inhibited the cellular metabolism of E. coli (62.44%) and S. aureus (51.52%) sessile cells. These results indicate their possible use as preserving agents in the food industry and suggest their potential exploitation in the development of new formulations to avoid or limit nosocomial infections.
Collapse
Affiliation(s)
- Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Correspondence:
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Giuseppe Amato
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Rosaria Francolino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Antonio D’Acierno
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Florinda Fratianni
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Vincenzo Candido
- Department of European and Mediterranean Culture, University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
| | - Raffaele Coppola
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Vincenzo De Feo
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| |
Collapse
|