1
|
Ghandehari-Alavijeh S, Can Karaca A, Akbari-Alavijeh S, Assadpour E, Farzaneh P, Saidi V, Jafari SM. Application of encapsulated flavors in food products; opportunities and challenges. Food Chem 2024; 436:137743. [PMID: 37852072 DOI: 10.1016/j.foodchem.2023.137743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Flavors are considered among the most important components of food formulations since they can predominantly affect the consumer acceptance and satisfaction. However, most flavors are highly volatile and inherently sensitive to pH, light, thermal processes, and chemical reactions such as oxidation and hydrolysis. Encapsulation is used as an effective strategy for protecting flavors from environmental conditions and extending their shelf life. Moreover, release characteristics of flavors can be modified via application of appropriate carriers and wall materials. This review focuses on the use of encapsulated flavors in various food products. Various factors affecting flavor retention during encapsulation, flavor release mechanisms, profiles and kinetics are discussed. Finally, the challenges associated with the use of encapsulated flavors in food products (in situ) and to model systems (in vitro), their storage stability, product requirements and problems related to the market are presented.
Collapse
Affiliation(s)
- Somayeh Ghandehari-Alavijeh
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parisa Farzaneh
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Vahideh Saidi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
2
|
Ghiasi F, Hashemi H, Esteghlal S, Hosseini SMH. An Updated Comprehensive Overview of Different Food Applications of W 1/O/W 2 and O 1/W/O 2 Double Emulsions. Foods 2024; 13:485. [PMID: 38338620 PMCID: PMC10855190 DOI: 10.3390/foods13030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Double emulsions (DEs) present promising applications as alternatives to conventional emulsions in the pharmaceutical, cosmetic, and food industries. However, most review articles have focused on the formulation, preparation approaches, physical stability, and release profile of encapsulants based on DEs, particularly water-in-oil-in-water (W1/O/W2), with less attention paid to specific food applications. Therefore, this review offers updated detailed research advances in potential food applications of both W1/O/W2 and oil-in-water-in-oil (O1/W/O2) DEs over the past decade. To this end, various food-relevant applications of DEs in the fortification; preservation (antioxidant and antimicrobial targets); encapsulation of enzymes; delivery and protection of probiotics; color stability; the masking of unpleasant tastes and odors; the development of healthy foods with low levels of fat, sugar, and salt; and design of novel edible packaging are discussed and their functional properties and release characteristics during storage and digestion are highlighted.
Collapse
Affiliation(s)
- Fatemeh Ghiasi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-13131, Iran; (H.H.); (S.E.); (S.M.H.H.)
| | | | | | | |
Collapse
|
3
|
Tian W, Huang Y, Liu L, Yu Y, Cao Y, Xiao J. Tailoring the oral sensation and digestive behavior of konjac glucomannan-gelatin binary hydrogel based bigel: Effects of composition and ratio. Int J Biol Macromol 2024; 256:127963. [PMID: 37951424 DOI: 10.1016/j.ijbiomac.2023.127963] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
In the food industry, there is a growing demand for bigels that offer both adaptable oral sensations and versatile delivery properties. Herein, we developed bigels using a binary hydrogel of konjac glucomannan (KGM) and gelatin (G) combined with a stearic acid oleogel. We closely examined how the oleogel/hydrogel volume ratio (φ) and the KGM/G mass ratio (γ) influenced various characteristics of the bigels, including their microstructure, texture, rheological properties, thermal-sensitivity, oral tribology, digestive stability, and nutraceutical delivery efficiency. A noteworthy observation was the structural evolution of the bigels with increasing φ values: transitioning from oleogel-in-hydrogel to a bicontinuous structure, and eventually to hydrogel-in-oleogel. Lower γ values yielded a softer, thermally-responsive bigel, whereas higher γ values imparted enhanced viscosity, stickiness, and spreadability to the bigel. Oral tribology assessments demonstrated that φ primarily influenced the friction sensations at lower chewing intensities. In contrast, γ played a significant role in augmenting oral friction perceptions during more intense chewing. Additionally, φ dictated the controlled release and bioaccessibility of curcumin, while γ determined digestive stability. This study provides valuable insights, emphasizing that through meticulous selection and adjustment of the hydrogel matrix composition, bigels can be custom-fabricated to achieve specific oral sensations and regulated digestive behaviors.
Collapse
Affiliation(s)
- Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yushu Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lang Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanshan Yu
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Sericultural & Argi-Food Research Institute, Guangzhou 510610, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Tian W, Huang Y, Song Z, Abdullah, Yu Y, Liu J, Cao Y, Xiao J. Flexible control of bigel microstructure for enhanced stability and flavor release during oral consumption. Food Res Int 2023; 174:113606. [PMID: 37986533 DOI: 10.1016/j.foodres.2023.113606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Edible delivery systems such as emulsions and gels that possess flexible oral flavor sensation and comprehensive stability under freeze-thaw processing are highly demanded in the frozen food industry. Bigels were fabricated via emulsification of stearic acid based oleogel with konjac glucomannan (KGM)-gelatin (G) based binary hydrogel. By varing the KGM/G mass ratio (γ) and oleogel/hydrogel volume ratio (φ) of bigels, modulation over the micromorphology, tribology, flavor sensation and cheese stick imitating capacity were achieved. Notably, as φ increased from O4:W6 to O5:W5, the microstructural transformation from oleogel-in-hydrogel to bicontinuous morphology emerged as a remarkable feature. The influence of γ was evident in bicontinuous bigels, significantly enhancing water holding capacity (WHC) by 3.38-fold as γ transitioned from 1KGM:5G to 6KGM:5G during freeze-thaw cycles. φ and γ both played pivotal roles in altering the microstructure and rheological properties of the bigels, enabling customizable release of bioactive components and flavor perception. Oleogel-in-hydrogel bigels effectively prevented bioactive compound leakage during freeze-thaw conditions, while bicontinuous bigels demonstrated sustained flavor release during oral mastication. Release behaviors were dual-controlled by φ and γ, reducing oil-soluble flavor release with increased φ and lowering hydrophilic volatile release with elevated γ. Moreover, bigel-based cheese sticks showcased lower viscosity, higher creep recovery rates, and enhanced mouthfeel during minimal oral chewing, suggesting their potential in mimicking the properties of commercial counterparts. These findings extend insights into bigel design for tailored flavor release and bioactive preservation in food products.
Collapse
Affiliation(s)
- Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yushu Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zengliu Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Abdullah
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanshan Yu
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Sericultural & Argi-Food Research Institute, Guangzhou 510610, China
| | - Jia Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and the Nutritional Intervention for Chronic Disease, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Wei W, Chen F, Qiu Y, Zhang L, Gao J, Wu T, Wang P, Zhang M, Zhu Q. Co-encapsulation of collagen peptide and astaxanthin in W G/O G/W double emulsions-filled alginate hydrogel beads: Fabrication, characterization and digestion behaviors. J Colloid Interface Sci 2023; 651:159-171. [PMID: 37542891 DOI: 10.1016/j.jcis.2023.07.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/18/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
The double emulsions-filled hydrogel beads delivery systems with controlled lipolysis and sustained-release property of co-encapsulated bioactive substances will be highly desired. Herein, the water-in-oil-in-water emulsion with gelled inner water phase and oil phase (WG/OG/W) filled hydrogel beads as a novel co-delivery system were developed with varied concentrations of rice bran wax and W/O emulsions to achieve effectively controlled release of lipolysis and nutraceuticals. Interestingly, the gelation of oil phase triggered by rice bran wax could enhance the storage stability of WG/OG/W emulsions due to the enhanced viscoelastic property. Increasing the mass fractions of W/O emulsions improved the stability of double emulsions due to increased viscosity and decreased particle size. Cryo-SEM observation showed that the double emulsion droplets were scattered in the three-dimensional network of alginate gel beads. Increased the addition of rice bran wax or W/O emulsions, the encapsulation efficiency of collagen peptide and astaxanthin was significantly improved. The in vitro digestion results indicated that increasing the concentrations of rice bran wax and W/O emulsion fractions in WG/OG/W emulsion-filled gel beads could effectively delay the release extent of free fatty acids and encapsulated nutraceuticals. The presence of rice bran wax contributed to increase the bioaccessibility of collagen peptide and astaxanthin.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Fu Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yihua Qiu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lujia Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jianbiao Gao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Ping Wang
- Tianjin Modern Innovative TCM Technology Co., Ltd., Tianjin 300000, PR China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Agricultural University, Tianjin 300384, PR China
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Modern Innovative TCM Technology Co., Ltd., Tianjin 300000, PR China.
| |
Collapse
|
6
|
Wang Q, Wang Z, Song J, Xu K, Tian W, Cai X, Mo J, Cao Y, Xiao J. Homogalacturonan enriched pectin based hydrogel enhances 6-gingerol's colitis alleviation effect via NF-κB/NLRP3 axis. Int J Biol Macromol 2023; 245:125282. [PMID: 37331544 DOI: 10.1016/j.ijbiomac.2023.125282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
A nanolipidcarrier (NLC) loaded homogalacturonan enriched pectin (citrus modified pectin, MCP4) hydrogel was designed as a novel colon inflammation site-specific oral delivery system for 6-gingerol (6G) (6G-NLC/MCP4 hydrogel) administration, and its colitis alleviation effect were investigated. 6G-NLC/MCP4 exhibited typical "cage-like" ultrastructure with 6G-NLC embedded in the hydrogel matrix as observed by cryoscanning electron microscope. And due to the homogalacturonan (HG) domain in MCP4 specifically combined with Galectin-3, which is overexpressed in the inflammatory region, the 6G-NLC/MCP4 hydrogel targeted to severe inflammatory region. Meanwhile, the prolonged-release characteristics of 6G-NLC provided sustained release of 6G in severe inflammatory regions. The matrix of hydrogel MCP4 and 6G achieved synergistic alleviation effects for colitis through NF-κB/NLRP3 axis. Specifically, 6G mainly regulated the NF-κB inflammatory pathway and inhibited the activity of NLRP3 protein, while MCP4 regulated the expression of Galectin-3 and peripheral clock gene Rev-Erbα/β to prevent the activation of inflammasome NLRP3.
Collapse
Affiliation(s)
- Qun Wang
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangjie Xu
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Xu Cai
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiamei Mo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong Province 510642, China.
| |
Collapse
|
7
|
Oral sensation and gastrointestinal digestive profiles of bigels tuned by the mass ratio of konjac glucomannan to gelatin in the binary hydrogel matrix. Carbohydr Polym 2023; 312:120765. [PMID: 37059518 DOI: 10.1016/j.carbpol.2023.120765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023]
Abstract
Bigels with tunable oral sensation and controlled gastrointestinal digestive profiles are highly demanded in the food industry. A binary hydrogel consisting of different mass ratio of konjac glucomannan to gelatin (φ) was designed to fabricate bigels with stearic acid oleogel. The impacts of φ on the structural, rheological, tribological, flavor release, and delivery properties of bigels were investigated. Structural transition of bigels from hydrogel-in-oleogel to bi-continuous, and then to oleogel-in-hydrogel type, as φ increased from 0.6 to 0.8, and then to 1.0-1.2. Enhanced storage modulus and yield stress were achieved along with the increased φ, while the structure-recovery properties of bigel decreased with increased φ. Under all the tested φ, the viscoelastic modulus and viscosity decreased significantly at oral temperatures but maintained the gel state, and the friction coefficient increased along with the increased φ under high chewing degree. Flexible control over the swelling, the lipid digestion and the release of lipophilic cargos were also observed, with the total release of free fatty acids and quercetin significantly reduced with the increased φ. This study presents a novel manipulation strategy to control oral sensation and gastrointestinal digestive profiles of bigels via tuning the fraction of konjac glucomannan in the binary hydrogel.
Collapse
|
8
|
Zhang J, Zhu J, Cheng Y, Huang Q. Recent Advances in Pickering Double Emulsions and Potential Applications in Functional Foods: A Perspective Paper. Foods 2023; 12:992. [PMID: 36900509 PMCID: PMC10001147 DOI: 10.3390/foods12050992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Double emulsions are complex emulsion systems with a wide range of applications across different fields, such as pharmaceutics, food and beverage, materials sciences, personal care, and dietary supplements. Conventionally, surfactants are required for the stabilization of double emulsions. However, due to the emerging need for more robust emulsion systems and the growing trends for biocompatible and biodegradable materials, Pickering double emulsions have attracted increasing interest. In comparison to double emulsions stabilized solely by surfactants, Pickering double emulsions possess enhanced stability due to the irreversible adsorption of colloidal particles at the oil/water interface, while adopting desired environmental-friendly properties. Such advantages have made Pickering double emulsions rigid templates for the preparation of various hierarchical structures and as potential encapsulation systems for the delivery of bioactive compounds. This article aims to provide an evaluation of the recent advances in Pickering double emulsions, with a special focus on the colloidal particles employed and the corresponding stabilization strategies. Emphasis is then devoted to the applications of Pickering double emulsions, from encapsulation and co-encapsulation of a wide range of active compounds to templates for the fabrication of hierarchical structures. The tailorable properties and the proposed applications of such hierarchical structures are also discussed. It is hoped that this perspective paper will serve as a useful reference on Pickering double emulsions and will provide insights toward future studies in the fabrication and applications of Pickering double emulsions.
Collapse
Affiliation(s)
| | | | | | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
9
|
Dalla E, Koumentakou I, Bikiaris N, Balla E, Lykidou S, Nikolaidis N. Formulation, Characterization and Evaluation of Innovative O/W Emulsions Containing Curcumin Derivatives with Enhanced Antioxidant Properties. Antioxidants (Basel) 2022; 11:2271. [PMID: 36421457 PMCID: PMC9687020 DOI: 10.3390/antiox11112271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
In the present study, a series of semisolid Oil in Water (O/W) emulsions containing different Curcumin (Cur) derivatives (Cur powder, Cur extract and Cur complexed with β-cyclodextrin) in varying concentrations, were prepared. Initially, Dynamic Light Scattering (DLS), microscopy, pH and viscosity measurements were performed to evaluate their stability over time. Moreover, the effect of the active cosmetic substances on the Sun Protection Factor (SPF), antimicrobial and antioxidant properties of the prepared emulsions was investigated. It was observed that emulsions containing Cur extract and Cur β-cyclodextrin complex presented great viscosity and pH stability for up to 90 days of storage contrary to the emulsions containing Cur powder which showed unstable behavior due to the formation of agglomerates. All samples presented SPF values between 2.6 and 3.2. The emulsions with Cur in all forms exhibited high antioxidant activity, whereas the emulsion containing Cur β-cyclodextrin complex presented the highest value. Despite their improved stability and antioxidant activity, the emulsions containing Cur extract and Cur-β-cyclodextrin exhibited a low percentage of antimicrobial activity against E. coli and Staphylococcus bacteria. Instead, the emulsions containing Cur powder presented a reduction rate over 90 % against E. coli and Staphylococcus colonies.
Collapse
|
10
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
11
|
Xiao J, Tian W, Abdullah, Wang H, Chen M, Huang Q, Zhang M, Lu M, Song M, Cao Y. Updated design strategies for oral delivery systems: maximized bioefficacy of dietary bioactive compounds achieved by inducing proper digestive fate and sensory attributes. Crit Rev Food Sci Nutr 2022; 64:817-836. [PMID: 35959723 DOI: 10.1080/10408398.2022.2109583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Interest in the application of dietary bioactive compounds (DBC) in healthcare and pharmaceutical industries has motivated researchers to develop functional delivery systems (FDS) aiming to maximize their bioefficacy. As the direct and indirect health benefiting effects of DBC are acknowledged, traditional design principle of FDS aiming at improving the bioavailability of intact DBC is challenged by the updated one, where the maximized bioefficacy of DBC delivered by FDS will be achieved via rationally absorbed at target sites with proper metabolism pathways. This article briefly summarized the absorption and metabolic fates of orally digested DBC along with their direct and indirect mechanisms to perform health benefiting effects. Current strategies in designing the next generation FDS with an emphasis on their modulation effects on the distribution portion between the upper and lower digestive tract, portal vein and lymphatic absorption, human digestive and gut microbiota enzymatic mediated metabolism were highlighted. Updated research progresses of FDS in adjusting sensory attributes of food end products and inducing synergistic effects rooting from matrix materials and co-delivered cargos were also discussed. Challenges as well as future perspectives concerning the precise nutrition and the critical role of delivery systems in dietary intervention were proposed.
Collapse
Affiliation(s)
- Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Abdullah
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Haonan Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meimiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Jersey, New Brunswick, USA
| | - Man Zhang
- Department of Food Science, Rutgers, the State University of New Jersey, New Jersey, New Brunswick, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|