Chen J, Zhang L, Yu R. Nucleic acid aptamer based thermally oxidized porous silicon/zinc oxide microarray chip for detection of ochratoxin A in cereals.
Food Chem 2024;
442:138384. [PMID:
38219567 DOI:
10.1016/j.foodchem.2024.138384]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
A nucleic acid aptamer based thermally oxidized porous silicon/zinc oxide microarray chip was constructed for the detection of ochratoxin A. The hybrid chains formed by aptamer and complementary chains labeled with fluorescent groups and fluorescent burst groups were used as recognition molecules, and the detection of toxins was accomplished on the chip by the principle of fluorescence signal burst and recovery. The modified QuEChERS method was used for sample pretreatment and the performance of the method was evaluated. The results showed that the linear range was 0.02 ∼ 200 ng/kg with the detection limit of 0.0196 ng/kg under the optimal detection conditions. The method was applied to different cereals with the recoveries of 90.30 ∼ 111.69 %. The developed microarray chip has the advantages of being cost-effective, easy to prepare, sensitive and specific, and can provide a new method for the detection of other toxins.
Collapse