1
|
Cao B, Bao C, Zhu Z, Gong Y, Wei J, Shen Z, Su N. Comparative Evaluation of Chemical Composition and Nutritional Characteristics in Various Quinoa Sprout Varieties: The Superiority of 24-Hour Germination. Foods 2024; 13:2513. [PMID: 39200439 PMCID: PMC11353781 DOI: 10.3390/foods13162513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd) sprouts are rich in bioactive compounds that offer numerous health benefits. However, limited research exists on their cultivation, nutritional value, and processing potential. This study compared the nutritional composition and antioxidant activity of quinoa sprouts from different varieties at various time points. Results showed a general increase in most nutrients over time. At the 24 h mark, JQ-W3 exhibited a 17.77% increase in leucine, 1.68 times higher than in eggs, along with a 6.11-fold elevation in GABA content. JQ-B1 exhibited the preeminent antioxidant potency composite (APC) score. Saponins, known for their bitter taste, decreased at 12 h but returned to original levels by 24 h. Based on nutritional components and saponin content, 24 h sprouted black quinoa JQ-B1 and white quinoa JQ-W3 were selected, providing a basis for quinoa sprout development in the food industry. These findings contribute to the understanding and utilization of quinoa sprouts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (B.C.); (C.B.); (Z.Z.); (Y.G.); (J.W.); (Z.S.)
| |
Collapse
|
2
|
Motrescu I, Lungoci C, Calistru AE, Luchian CE, Gocan TM, Rimbu CM, Bulgariu E, Ciolan MA, Jitareanu G. Non-Thermal Plasma (NTP) Treatment of Alfalfa Seeds in Different Voltage Conditions Leads to Both Positive and Inhibitory Outcomes Related to Sprout Growth and Nutraceutical Properties. PLANTS (BASEL, SWITZERLAND) 2024; 13:1140. [PMID: 38674549 PMCID: PMC11054222 DOI: 10.3390/plants13081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Non-thermal plasma (NTP) has proven to be a green method in the agricultural field for the stimulation of germination, growth, and production of nutraceutical compounds in some cases. However, the process is far from being fully understood and depends on the targeted plant species and the NTP used. In this work, we focus on the production of alfalfa sprouts from NTP-treated seeds under different voltage conditions. A flexible electrode configuration was used to produce the NTP, which can also be placed on packages for in-package treatments. The surface of the seeds was analyzed, indicating that the microstructure was strongly affected by NTP treatment. Biometric measurements evidenced the possibility of stimulating the sprout growth in some conditions by up to 50% compared to the sprouts obtained from untreated seeds. Biochemical traits for the sprouts obtained in different processing conditions were also studied, such as the concentrations of chlorophyll pigments, flavonoids and polyphenols, and antioxidant activity. Most NTP treatments led to inhibitory effects, proving the strong dependence between NTP treatment and targeted plant species.
Collapse
Affiliation(s)
- Iuliana Motrescu
- Department of Exact Sciences, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania; (C.E.L.); (E.B.)
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania; (A.E.C.); (G.J.)
| | - Constantin Lungoci
- Department of Plant Sciences, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania;
| | - Anca Elena Calistru
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania; (A.E.C.); (G.J.)
- Department of Pedotechnics, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania
| | - Camelia Elena Luchian
- Department of Exact Sciences, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania; (C.E.L.); (E.B.)
| | - Tincuta Marta Gocan
- Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Cristina Mihaela Rimbu
- Department of Public Health, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania;
| | - Emilian Bulgariu
- Department of Exact Sciences, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania; (C.E.L.); (E.B.)
| | - Mihai Alexandru Ciolan
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Science, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| | - Gerard Jitareanu
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania; (A.E.C.); (G.J.)
- Department of Pedotechnics, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania
| |
Collapse
|
3
|
Xiang N, Wong CW, Guo X, Wang S. Infectivity responses of Salmonella enterica to bacteriophages on maize seeds and maize sprouts. Curr Res Food Sci 2024; 8:100708. [PMID: 38444730 PMCID: PMC10912052 DOI: 10.1016/j.crfs.2024.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Salmonella enterica (S. enterica) is a major foodborne pathogen leading to a large number of outbreaks and bringing food safety concerns to sprouts. The control of S. enterica on maize sprouts is important because raw maize sprouts have been gaining attention as a novel superfood. Compared to conventional chemical methods, the applications of bacteriophages are regarded as natural and organic. This study investigated the effects of a 2 h phage cocktail (SF1 and SI1, MOI 1000) soaking on reducing the populations of three Salmonella enterica strains: S. Enteritidis S5-483, S. Typhimurium S5-536, and S. Agona PARC5 on maize seeds and during the storage of maize sprouts. The results showed that the phage cocktail treatment effectively reduced populations of S. enterica strains by 1-3 log CFU/g on maize seeds and decreased population of S. Agona PACR5 by 1.16 log CFU/g on maize sprouts from 7.55 log CFU/g at day 0 of the storage period. On the other hand, the upregulations of flagella gene pefA by 1.5-folds and membrane gene lpxA by 23-folds in S. Typhimurium S5-536 indicated a differential response to the phage cocktail treatment. Conversely, stress response genes ompR, rpoS, and recA, as well as the DNA repair gene yafD, were downregulated in S. Agona PARC5. This work shows the use of bacteriophages could contribute as a part of hurdle effect to reduce S. enterica populations and is beneficial to develop strategies for controlling foodborne pathogens in the production and storage of maize sprouts.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| | - Catherine W.Y. Wong
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| |
Collapse
|
4
|
Che G, Chen M, Li X, Xiao J, Liu L, Guo L. Effect of UV-A Irradiation on Bioactive Compounds Accumulation and Hypoglycemia-Related Enzymes Activities of Broccoli and Radish Sprouts. PLANTS (BASEL, SWITZERLAND) 2024; 13:450. [PMID: 38337982 PMCID: PMC10857714 DOI: 10.3390/plants13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In the present study, different intensities of UV-A were applied to compare their effects on growth, bioactive compounds and hypoglycemia-related enzyme activities in broccoli and radish sprouts. The growth of sprouts was decreased after UV-A irradiation. A total of 12 W of UV-A irradiation resulted in the highest content of anthocyanin, chlorophyll, polyphenol and ascorbic acid in broccoli and radish sprouts. The highest soluble sugar content was recorded in sprouts under 8 W of UV-A irradiation, while no significant difference was obtained in soluble protein content among different UV-A intensities. Furthermore, 12 W of UV-A irradiation induced the highest glucosinolate accumulation, especially glucoraphanin and glucoraphenin in broccoli and radish sprouts, respectively; thus, it enhanced sulforaphane and sulforaphene formation. The α-amylase, α-glucosidase and pancrelipase inhibitory rates of two kinds of sprouts were enhanced significantly after UV-A irradiation, indicating UV-A-irradiation-treated broccoli and radish sprouts have new prospects as hypoglycemic functional foods.
Collapse
Affiliation(s)
- Gongheng Che
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
| | - Mingmei Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
| | - Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| |
Collapse
|
5
|
Maqbool Z, Khalid W, Mahum, Khan A, Azmat M, Sehrish A, Zia S, Koraqi H, AL‐Farga A, Aqlan F, Khan KA. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Sci Nutr 2024; 12:707-721. [PMID: 38370091 PMCID: PMC10867502 DOI: 10.1002/fsn3.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Mahum
- Food Science and TechnologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
| | - Anosha Khan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Maliha Azmat
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Aqeela Sehrish
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Sania Zia
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Hyrije Koraqi
- Faculty of Food Science and BiotechnologyUBT‐Higher Education InstitutionPristinaKosovo
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| | - Khalid Ali Khan
- Center of Bee Research and its Products/ Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
- Applied CollegeKing Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
6
|
Gollop R, Kroupitski Y, Matz I, Chahar M, Shemesh M, Sela Saldinger S. Bacillus strain BX77: a potential biocontrol agent for use against foodborne pathogens in alfalfa sprouts. FRONTIERS IN PLANT SCIENCE 2024; 15:1287184. [PMID: 38313804 PMCID: PMC10834763 DOI: 10.3389/fpls.2024.1287184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024]
Abstract
Despite regulatory and technological measures, edible sprouts are still often involved in foodborne illness and are considered a high-risk food. The present study explored the potential of spore-forming Bacillus isolates to mitigate Salmonella and Escherichia coli contamination of alfalfa sprouts. Food-derived Bacillus strains were screened for antagonistic activity against S. enterica serovar Typhimurium SL1344 (STm) and enteropathogenic E. coli O55:H7. Over 4 days of sprouting, levels of STm and E. coli on contaminated seeds increased from 2.0 log CFU/g to 8.0 and 3.9 log CFU/g, respectively. Treatment of the contaminated seeds with the most active Bacillus isolate, strain BX77, at 7 log CFU/g seeds resulted in substantial reductions in the levels of STm (5.8 CFU/g) and E. coli (3.9 log CFU/g) in the sprouted seeds, compared to the control. Similarly, co-culturing STm and BX77 in sterilized sprout extract at the same ratio resulted in growth inhibition and killed the Salmonella. Confocal-microscopy experiments using seeds supplemented with mCherry-tagged Salmonella revealed massive colonization of the seed coat and the root tip of 4-day-old sprouted seeds. In contrast, very few Salmonella cells were observed in sprouted seeds grown with BX77. Ca-hypochlorite disinfection of seeds contaminated with a relatively high concentration of Salmonella (5.0 log CFU/g) or treated with BX77 revealed a mild inhibitory effect. However, disinfection followed by the addition of BX77 had a synergistic effect, with a substantial reduction in Salmonella counts (7.8 log CFU/g) as compared to untreated seeds. These results suggest that a combination of chemical and biological treatments warrants further study, toward its potential application as a multi-hurdle strategy to mitigate Salmonella contamination of sprouted alfalfa seeds.
Collapse
Affiliation(s)
- Rachel Gollop
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Yulia Kroupitski
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Ilana Matz
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Madhvi Chahar
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
- Current address: Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Moshe Shemesh
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Shlomo Sela Saldinger
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| |
Collapse
|
7
|
Salgado VDSCN, Zago L, Fonseca END, Calderari MRDCM, Citelli M, Miyahira RF. Chemical Composition, Fatty Acid Profile, Phenolic Compounds, and Antioxidant Activity of Raw and Germinated Chia (Salvia hispanica L.) Seeds. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:735-741. [PMID: 37856036 DOI: 10.1007/s11130-023-01115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
The consumption of chia seeds has become popular due to their beneficial health properties and the germination of chia seeds seems to further enhance these properties. This study aimed to evaluate the changes in the nutritional composition of chia seeds after germination for 3 and 6 days. Chemical composition, fatty acid profile, phenolic content and antioxidant capacity were determined. The indices of lipid quality, atherogenicity, thrombogenicity, and the n-6/n-3 ratio were calculated. Chia sprouts presented a significant increase in minerals, proteins, and a reduction in total lipid content with maintenance of lipid quality. Total phenolic content decreased significantly as germination time increased, but there was a significant increase in the amount of rosmarinic acid. Chia sprouts showed a significant increase in antioxidant potential when compared to raw chia seeds. As a conclusion, the results of this study demonstrated that chia seed germination is a simple, economical, and short-term process capable of improving the nutritional composition of the seeds.
Collapse
Affiliation(s)
| | - Lilia Zago
- Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Eduardo Nunes da Fonseca
- Department of Organic Chemistry, Chemistry Institute, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | | | - Marta Citelli
- Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
8
|
Jiang G, Wang S, Xie J, Tan P, Han L. Discontinuous low temperature stress and plant growth regulators during the germination period promote roots growth in alfalfa (Medicago sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107624. [PMID: 36948023 DOI: 10.1016/j.plaphy.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In high-cold regions, alfalfa is susceptible to cold damage during the seed germination. The effects of discontinuous low temperature stress and plant growth regulators (PGRs) on alfalfa were studied in response to the high day/night temperature differentials in the area. The experiments included seed germination, seedling cold tolerance and plant recovery. Variable temperatures (VT) of 0 °C/15 °C, 5 °C/20 °C and 10 °C/25 °C were set and seeds were soaked with alginate oligosaccharides (AOS), brassinolide (BR) and diethyl aminoethyl hexanoate (DA-6) during the germination period. Parameters such as seed germination and mean germination time (MGT), phenylalanine ammonia-lyase (PAL) activity and oligomeric proanthocyanidins (OPC) content of early seedlings, dry matter accumulation and root crown of the restored plants were analysed. The results showed that low variable-temperature (LVT) stress prolonged the MGT but had little inhibitory effect on germination percentage. Early seedlings adapted to LVT stress by regulating their own water and OPC content, PAL activity and other parameters. LVT induced early alfalfa seedlings to increase their underground biomass by shortening root length and increasing root diameter, and those that had accumulated more underground biomass had faster growth rates and higher total biomass when the ambient temperature rose. AOS also promoted an increase in root crown diameter and root dry weight. This research proved that LVT stress and AOS during the germination process can lead to better growth of alfalfa in high cold regions.
Collapse
Affiliation(s)
- Gaoqian Jiang
- Institute of Genetics and Developmental Biology Center for Agricultural Resources Research, Chinese Academy of Sciences / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang, 050022, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shichao Wang
- Institute of Genetics and Developmental Biology Center for Agricultural Resources Research, Chinese Academy of Sciences / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Jin Xie
- Institute of Genetics and Developmental Biology Center for Agricultural Resources Research, Chinese Academy of Sciences / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Pan Tan
- Institute of Genetics and Developmental Biology Center for Agricultural Resources Research, Chinese Academy of Sciences / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang, 050022, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lipu Han
- Institute of Genetics and Developmental Biology Center for Agricultural Resources Research, Chinese Academy of Sciences / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang, 050022, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Kim JH, Duan S, Park YR, Eom SH. Tissue-Specific Antioxidant Activities of Germinated Seeds in Lentil Cultivars during Thermal Processing. Antioxidants (Basel) 2023; 12:antiox12030670. [PMID: 36978918 PMCID: PMC10045596 DOI: 10.3390/antiox12030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Nongerminated seeds (NGS) and germinated seeds (GS) of lentils are regularly eaten after thermal processing. However, the effect of these high temperatures on the beneficial antioxidants present in seeds is unknown. This study examined the effects of thermal processing on the color, polyphenol content, and antioxidant activity (AA) of the seeds of three different cultivars of lentils, including two with seed coats, French green (FG) and Lentil green (LG), and one without a seed coat, Lentil red (LR). Regardless of the cultivars and processing temperatures, the GS tended to be clearer and less yellow than the NGS. The GS of the FG and LG showed lower levels of total phenolic content, major flavonoid content (kaempferol, luteolin, and myricetin), and AA than the NGS. On the other hand, the LR displayed the opposite trend, with the above indicators being higher in the GS than in the NGS. As the values in the germinated endosperm tended to increase, it was concluded that the decrease in AA in the FG and LG was caused by the reduction in antioxidants in the seed coat. Although the temperature had nonsignificant effects on the majority of the antioxidants in the NGS and GS of different lentil cultivars, an 80 °C treatment yielded the highest value of AA in the GS of FG and LG. The results of a correlation coefficient analysis demonstrated the significance of the content of kaempferol, total flavonoids, and total phenolics examined for this experiment as contributors to AA in lentil tissues.
Collapse
Affiliation(s)
- Ji Hye Kim
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Shucheng Duan
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - You Rang Park
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seok Hyun Eom
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
- Correspondence:
| |
Collapse
|
10
|
Chemical characterization of pomegranate and alfalfa seed oils obtained by a two-step sequential extraction procedure of expeller and supercritical CO2 technologies. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|