1
|
Chen H, Liu X, Liu J, Fan H, Ren J, Liu H, Liu T. Study on the structure and adsorption characteristics of the complex of modified Lentinus edodes stalks dietary fiber and tea polyphenol. Food Chem 2024; 468:142321. [PMID: 39732095 DOI: 10.1016/j.foodchem.2024.142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/30/2024]
Abstract
The waste Lentinus edodes stalks from Lentinus edodes processing were used as raw materials by the steam explosion to prepare modified Lentinus edodes stalks dietary fiber and combined with tea polyphenols to form the SE-DF-tea polyphenols complex (SE-DF-TPC). The SE-DF-tea polyphenols mixture (SE-DF-TPM) was prepared according to the complex's optimal adsorption conditions. Fluorescence microscopy, Fourier transform infrared spectroscopy, particle size measurement, thermogravimetric analysis, and X-ray diffraction were used to analyze its structure, and the thermal stability of the complex and its adsorption capacity for lipids, cholesterol, and cholates were studied. The results indicate that dietary fiber from modified Lentinus edodes stalks and tea polyphenols form a stable complex through non-covalent bonding. In addition, the thermal stability of the phenolic substances in the complex and the adsorption capacity of the complex to fats, cholesterol, and cholates is better than modified dietary fiber and the mixture of dietary fiber and tea polyphenols.
Collapse
Affiliation(s)
- Hong Chen
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Xiaolong Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Junyan Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Jiayao Ren
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China.
| |
Collapse
|
2
|
Rosales TKO, Silva FFAD, Rivera AG, Santos SND, Bustos D, Morales-Quintana LA, Santos HA, Bernardes ES, Fabi JP. A study of the oral bioavailability and biodistribution increase of Nanoencapsulation-driven Delivering radiolabeled anthocyanins. Food Res Int 2024; 197:115125. [PMID: 39593352 DOI: 10.1016/j.foodres.2024.115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 11/28/2024]
Abstract
Anthocyanins have antioxidant, anti-inflammatory, and anticancer properties but have limited bioaccessibility and bioavailability due to molecular instability in the gastrointestinal tract. This study evaluated the absorption and biodistribution of free and nanoencapsulated radiolabeled anthocyanin (cyanidin-3-O-glucoside). A new methodology was efficiently developed for radiolabeling anthocyanins with Technetium (99mTc-anthocyanins). Then, the anthocyanins were nanoencapsulated through self-assembly using citrus pectin and lysozyme. The nanostructures have a size of 190 nm, a zeta potential of -30 mV, and an invariably spherical and homogeneous morphology. The biodistribution in different tissues, the kinetics of absorption, and molecular visualization by micro single-photon emission computed tomography/computed tomography (µSPECT/CT) showed that the nanoencapsulated anthocyanins are absorbed differently than free anthocyanin in mice. After oral administration, nanostructured anthocyanins were delivered to the blood, spleen, bladder, pancreas, and bone, unlike unencapsulated anthocyanins found only in kidneys and bladder. In silico data indicated the stabilization between compounds in nanocapsules and demonstrated the pH-dependent release of anthocyanins in the intestine. The nanoencapsulation alters the absorption kinetics, increasing the blood's bioavailability and the organs' uptake, suggesting an improvement of the biological effects and potential clinical application.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil; Instituto de Pesquisa Energéticas e Nucleares - IPEN, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil
| | | | - Andy Gonzàlez Rivera
- Molecular Imaging Research Program, Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Daniel Bustos
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Luis Alberto Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Poniente #1670 Talca, Región del Maule, Chile
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Rosales TKO, da Silva FFA, Bernardes ES, Paulo Fabi J. Plant-derived polyphenolic compounds: nanodelivery through polysaccharide-based systems to improve the biological properties. Crit Rev Food Sci Nutr 2024; 64:11894-11918. [PMID: 37585699 DOI: 10.1080/10408398.2023.2245038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Plant-derived polyphenols are naturally occurring compounds widely distributed in plants. They have received greater attention in the food and pharmaceutical industries due to their potential health benefits, reducing the risk of some chronic diseases due to their antioxidant, anti-inflammatory, anticancer, cardioprotective, and neuro-action properties. Polyphenolic compounds orally administered can be used as adjuvants in several treatments but with restricted uses due to chemical instability. The review discusses the different structural compositions of polyphenols and their influence on chemical stability. Despite the potential and wide applications, there is a need to improve the delivery of polyphenolics to target the human intestine without massive chemical modifications. Oral administration of polyphenols is unfeasible due to instability, low bioaccessibility, and limited bioavailability. Nano-delivery systems based on polysaccharides (starch, pectin, chitosan, and cellulose) have been identified as a viable option for oral ingestion, potentiate biological effects, and direct-controlled delivery in specific tissues. The time and dose can be individualized for specific diseases, such as intestinal cancer. This review will address the mechanisms by which polysaccharides-based nanostructured systems can protect against degradation and enhance intestinal permeation, oral bioavailability, and the potential application of polysaccharides as nanocarriers for the controlled and targeted delivery of polyphenolic compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto de Pesquisa Energéticas e Nucleares - IPEN, São Paulo, SP, Brazil
| | | | | | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Liu C, Li X, Zeng Y, Liang S, Sun J, Bai W. Interaction between a Commercial Mannoprotein and Cyanidin-3- O-glucoside-4-vinylphenol and Its Stability and Antioxidative Properties as a Novel Functional Pigment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37910136 DOI: 10.1021/acs.jafc.3c05643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Hydroxyphenyl-pyranoanthocyanins, which are derived from anthocyanins and phenolic acids during the fermentation and aging of red wine, are prone to polymerization and precipitation, which largely limits their application and bioactivity research. In the present study, cyanidin-3-O-glucoside-4-vinylphenol (C3GVP), a hydroxyphenyl-pyranoanthocaynin, was prepared from C3G and p-coumaric acid, and mannoprotein (MP) was employed to improve its stability in various complex solvents by forming a stable anthocyanin-MP complex. We used scanning electron microscopy, ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, and circular dichroism spectroscopy to observe structural changes in C3GVP and MP. The results demonstrated that the intermolecular polymerization of C3GVP was mitigated and the secondary conformation of MP was changed slightly. Fluorescence spectroscopy and molecular docking indicated that C3GVP and MP interacted via hydrogen bonds and hydrophobic interactions. Importantly, the C3GVP-MP complex exhibited better thermal stability and antioxidant capacity than C3G.
Collapse
Affiliation(s)
- Chuqi Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Shuyan Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
5
|
Rosales TKO, Fabi JP. Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles. Front Nutr 2023; 10:1144677. [PMID: 37293672 PMCID: PMC10244521 DOI: 10.3389/fnut.2023.1144677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the last decades, evidence has indicated the beneficial properties of dietary polyphenols. In vitro and in vivo studies support that the regular intake of these compounds may be a strategy to reduce the risks of some chronic non-communicable diseases. Despite their beneficial properties, they are poorly bioavailable compounds. Thus, the main objective of this review is to explore how nanotechnology improves human health while reducing environmental impacts with the sustainable use of vegetable residues, from extraction to the development of functional foods and supplements. This extensive literature review discusses different studies based on the application of nanotechnology to stabilize polyphenolic compounds and maintain their physical-chemical stability. Food industries commonly generate a significant amount of solid waste. Exploring the bioactive compounds of solid waste has been considered a sustainable strategy in line with emerging global sustainability needs. Nanotechnology can be an efficient tool to overcome the challenge of molecular instability, especially using polysaccharides such as pectin as assembling material. Complex polysaccharides are biomaterials that can be extracted from citrus and apple peels (from the juice industries) and constitute promising wall material stabilizing chemically sensitive compounds. Pectin is an excellent biomaterial to form nanostructures, as it has low toxicity, is biocompatible, and is resistant to human enzymes. The potential extraction of polyphenols and polysaccharides from residues and their inclusion in food supplements may be a possible application to reduce environmental impacts and constitutes an approach for effectively including bioactive compounds in the human diet. Extracting polyphenolics from industrial waste and using nanotechnology may be feasible to add value to food by-products, reduce impacts on nature and preserve the properties of these compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Qi X, Zhang Y, Yu H, Xie J. Research on the Properties of Polysaccharides, Starch, Protein, Pectin, and Fibre in Food Processing. Foods 2023; 12:249. [PMID: 36673341 PMCID: PMC9857836 DOI: 10.3390/foods12020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
As food components, polysaccharides, starch, protein, pectin, and fibre are often used in the food industry due to their particular functional properties, as well as their efficient, safe, and green characteristics [...].
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
7
|
Liu T, Zou L, Ji X, Xiao G. Chicken skin-derived collagen peptides chelated zinc promotes zinc absorption and represses tumor growth and invasion in vivo by suppressing autophagy. Front Nutr 2022; 9:960926. [PMID: 35990359 PMCID: PMC9381994 DOI: 10.3389/fnut.2022.960926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
To improve the utilization value of chicken by-products, we utilized the method of step-by-step hydrolysis with bromelain and flavourzyme to prepare low molecular weight chicken skin collagen peptides (CCP) (<5 kDa) and characterized the amino acids composition of the CCP. Then, we prepared novel CCP-chelated zinc (CCP–Zn) by chelating the CCP with ZnSO4. We found that the bioavailability of CCP–Zn is higher than ZnSO4. Besides, CCP, ZnSO4, or CCP–Zn effectively repressed the tumor growth, invasion, and migration in a Drosophila malignant tumor model. Moreover, the anti-tumor activity of CCP–Zn is higher than CCP or ZnSO4. Furthermore, the functional mechanism studies indicated that CCP, ZnSO4, or CCP–Zn inhibits tumor progression by reducing the autonomous and non-autonomous autophagy in tumor cells and the microenvironment. Therefore, this research provides in vivo evidence for utilizing chicken skin in the development of zinc supplements and cancer treatment in the future.
Collapse
Affiliation(s)
- Tengfei Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
8
|
Rosales TKO, Fabi JP. Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives. Colloids Surf B Biointerfaces 2022; 218:112707. [PMID: 35907354 DOI: 10.1016/j.colsurfb.2022.112707] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants, and regular consumption is associated with a reduced risk of several diseases. However, the application of anthocyanins in foods represents a challenge due to molecular instability. The encapsulation of anthocyanins in nanostructures is a viable way to protect from the factors responsible for degradation and enable the industrial application of these compounds. Nanoencapsulation is a set of techniques in which the bioactive molecules are covered by resistant biomaterials that protect them from chemical and biological factors during processing and storage. This review comprehensively summarizes the existing knowledge about the structure of anthocyanins and molecular stability, with a critical analysis of anthocyanins' nanoencapsulation, the main encapsulating materials (polysaccharides, proteins, and lipids), and techniques used in the formation of nanocarriers to protect anthocyanins. Some studies point to the effectiveness of nanostructures in maintaining anthocyanin stability and antioxidant activity. The main advantages of the application of nanoencapsulated anthocyanins in foods are the increase in the nutritional value of the food, the addition of color, the increase in food storage, and the possible increase in bioavailability after oral ingestion. Nanoencapsulation improves stability for anthocyanin, thus demonstrating the potential to be included in foods or used as dietary supplements, and current limitations, challenges, and future directions of anthocyanins' have also been discussed.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|