1
|
Lou H, Wang J, Wang Y, Gao Y, Wang W. Protective effects of potential probiotics Lacticaseibacillus rhamnosus SN21-1 and Lactiplantibacillus plantarum SN21-2 against Salmonella typhimurium infection in broilers. Poult Sci 2024; 103:104207. [PMID: 39278111 PMCID: PMC11418103 DOI: 10.1016/j.psj.2024.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024] Open
Abstract
This study aimed to explore the probiotic characteristics of Lacticaseibacillus rhamnosus SN21-1 and Lactiplantibacillus plantarum SN21-2 by genotype and phenotype analysis, assess their safety in vitro and in vivo, and investigate the effects of L. rhamnosus SN21-1 and L. plantarum SN21-2 on Salmonella typhimurium-infected broilers in an in vivo experiment. L. rhamnosus SN21-1 and L. plantarum SN21-2 showed antimicrobial activity against pathogens, including S. Typhimurium, resistance to simulated gastrointestinal digestive fluid, and adhesion to HT-29 cells. In addition, L. rhamnosus SN21-1 and L. plantarum SN21-2 showed no resistance to most common antimicrobial agents and no haemolysis in vitro. Whole-genome sequence analyses of L. rhamnosus SN21-1 and L. plantarum SN21-2 provided basic genomic information, functional genes underlying the probiotic characteristics, and evidence of safety. Furthermore, feeding with L. rhamnosus SN21-1 or L. plantarum SN21-2 for 28 d had no significant effect on the growth or blood biochemical parameters of the broilers, and hematoxylin-eosin staining revealed no liver, spleen, heart, or kidney damage. Additionally, L. rhamnosus SN21-1 or L. plantarum SN21-2 did not translocate to the blood, liver, spleen, heart, or kidney of the broilers. Moreover, L. rhamnosus SN21-1 and L. plantarum SN21-2 significantly reduced S. Typhimurium counts in the faeces and caecal contents of S. Typhimurium-infected broilers and reduced small intestinal bleeding in S. Typhimurium-infected broilers. Consequently, L. rhamnosus SN21-1 and L. plantarum SN21-2 have excellent probiotic characteristics and are safe for use as anti-S. typhimurium probiotics in broilers.
Collapse
Affiliation(s)
- Haibo Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongdong Gao
- Agriculture Technology Extension Service Center of Shanghai, Shanghai 201103, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Davarzani S, Sanjabi MR, Mojgani N, Mirdamadi S, Soltani M. Investigating the Antibacterial, Antioxidant, and Cholesterol-lowering Properties of Yogurt Fortified with Postbiotic of Lactobacillus acidophilus and Lactiplantibacillus plantarum in the Wistar Rat Model. J Food Prot 2024; 87:100408. [PMID: 39547582 DOI: 10.1016/j.jfp.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Postbiotics have gained attention in the food industry due to their functional properties and ease of use compared to their live parent cells. Postbiotics are the metabolic byproducts of probiotic microorganisms, offering advantages such as antimicrobial and anti-diabetic effects. The study aimed to explore the potential antibacterial, antioxidant, and cholesterol-lowering effects of postbiotics from Lactobacillus acidophilus (LA) and Lactiplantibacillus plantarum (LbP) through in vitro and in vivo studies. Freeze-dried postbiotics from L. acidophilus BLAC 258 and L. plantarum were used in yogurt to inhibit foodborne pathogens over a 21-day storage period at 4 °C. The cholesterol-lowering effects of the postbiotic yogurt were assessed in Wistar rats fed with Normal Basal Diet (NBD) and High Cholesterol Diet (HCD). All experiments were performed in triplicate, and the collected data were analyzed with a one-way ANOVA using SPSS v.20 (2021) software. The Tukey Honestly Significant Difference (HSD) test was used for means differences at the 95% confidence interval. The results showed that postbiotic-fortified yogurt exhibited significant antioxidant and antibacterial effects. The antioxidant capacity of the yogurt increasingly peaked at 48.81% on day 14. Also, Listeria monocytogenes counts in the postbiotic yogurt decreased by approximately 2 Log10 on day 3. High-cholesterol-fed rats receiving postbiotic yogurt experienced significant reductions in total cholesterol, triglycerides, and LDL levels. Overall results indicate that postbiotics functional yogurt might be a safe and effective strategy for managing cholesterol levels and inhibiting foodborne pathogens.
Collapse
Affiliation(s)
- Sareh Davarzani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Sanjabi
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Naheed Mojgani
- Biotechnology Department, Razi Vaccine and Serum Research Institute-Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Mostafa Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Nisar S, Shah AH, Nazir R. The clinical praxis of bacteriocins as natural anti-microbial therapeutics. Arch Microbiol 2024; 206:451. [PMID: 39476181 DOI: 10.1007/s00203-024-04152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 11/10/2024]
Abstract
In recent decades, the excessive use of antibiotics has resulted in a rise in antimicrobial drug resistance (ADR). Annually, a significant number of human lives are lost due to resistant infectious diseases, leading to around 700,000 deaths, and it is estimated that by 2050, there could be up to 10 million casualties. Apart from their possible application as preservatives in the food sector, bacteriocins are gaining acknowledgment as potential clinical treatments. Not only this, these antimicrobial peptides have revealed in modulating the host immune system producing anti-inflammatory and anti-modulatory responses. At the same time, due to the ever-increasing global threat of antibiotic resistance, bacteriocins have gained attraction among researchers due to their potential clinical applications. Bacteriocins as antimicrobial peptides, represent one of the most important natural defense mechanisms among bacterial species, particularly lactic acid bacteria (LAB), that can fight against infection-causing pathogens. In this review, we are highlighting the potential of bacteriocins as novel therapeutics for inhibiting a wide range of clinically relevant and multi-drug-resistant pathogens (MDR). We also highlight the effectiveness and potential applications of current bacteriocin treatments in combating antimicrobial resistance (AMR), thereby promoting human health.
Collapse
Affiliation(s)
- Safura Nisar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
4
|
Liu Y, Liu Y, Hao L, Cao J, Jiang L, Yi H. Metabolomic Approaches to Study the Potential Inhibitory Effects of Plantaricin Q7 against Listeria monocytogenes Biofilm. Foods 2024; 13:2573. [PMID: 39200500 PMCID: PMC11353926 DOI: 10.3390/foods13162573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Listeria monocytogenes is a serious pathogen and can exacerbate harmful effects through the formation of biofilm. Inhibition of or reduction in L. monocytogenes biofilm is a promising strategy to control L. monocytogenes in the food industry. In our previous study, it was found that plantaricin Q7 produced by Lactiplantibacillus plantarum Q7 could inhibit and reduce L. monocytogenes biofilm, but the specific mechanism remains unclear. In this study, the inhibitive and reduced activity of plantaricin Q7 on L. monocytogenes biofilm was investigated by metabolomics. The results showed that plantaricin Q7 inhibited the synthesis of L. monocytogenes biofilm mainly through purine metabolism and glycerol phospholipid metabolism, and the key differential metabolites included acetylcholine and hypoxanthine with a decrease in abundance from 5.80 to 4.85. In addition, plantaricin Q7 reduced the formed L. monocytogenes biofilm by purine metabolism and arginine biosynthesis, and the main differential metabolites were N-acetylglutamate and D-ribose-1-phosphate with a decrease in abundance from 6.21 to 4.73. It was the first report that purine metabolism and amino acid metabolism were the common metabolic pathway for plantaricin Q7 to inhibit and reduce L. monocytogenes biofilm, which could be potential targets to control L. monocytogenes biofilm. A putative metabolic pathway for L. monocytogenes biofilm inhibition and reduction by plantaricin Q7 was proposed. These findings provided a novel strategy to control L. monocytogenes biofilm in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.L.); (Y.L.); (L.H.); (J.C.); (L.J.)
| |
Collapse
|
5
|
Liang X, Dai N, Yang F, Zhu H, Zhang G, Wang Y. Molecular identification and safety assessment of the potential probiotic strain Bacillus paralicheniformis HMPM220325 isolated from artisanal fruit dairy products. Food Funct 2024; 15:747-765. [PMID: 38117188 DOI: 10.1039/d3fo04625g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bacillus probiotics exhibit considerable economic potential owing to their heightened resilience to external stressors and relatively lower costs related to production and preservation. Although Bacillus paralicheniformis has been acknowledged as a plant-promoting bacterium for a long time, understanding its potential as a probiotic is still in its nascent stages. In this study, the safety and probiotic characteristics of a strain of HMPM220325, isolated from artisanal fruit dairy products, were examined through whole-genome sequencing and phenotypic analysis. The whole genome of HMPM220325 was analyzed for antimicrobial resistance genes, pathogenicity factors, and genes associated with probiotic traits including stress resistance, spore formation, gut adhesion, competitive exclusion of pathogens, bacteriocin expression, and carbohydrate metabolism related to prebiotic utilization. Also, wet lab experiments were conducted for the characterization of probiotics. The identification of the organism as B. paralicheniformis was verified. Its safety was assessed through in silico analysis, the haemolytic activity test, and the acute oral toxicity test. B. paralicheniformis HMPM220325 demonstrated its ability to survive in the pH range of 4-10 and bile salt concentrations of 0-0.9% (w/v), tolerate temperatures between 20 and 60 °C, and exhibit a robust antioxidant capacity. Moreover, B. paralicheniformis HMPM220325 demonstrated a moderate level of hydrophobicity, had the ability to form biofilms, achieved a self-aggregation rate of 51.77 ± 1.01% within 6 hours, and successfully colonized the mouse intestine for a duration of up to 17 days. Additionally, the genome of B. paralicheniformis HMPM220325 contains three gene clusters associated with the biosynthesis of bacteriocins and exhibits co-aggregation with Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium. The findings of the genomic analysis align with those obtained from the experimental investigation, thereby substantiating the potential of B. paralicheniformis HMPM220325 as a probiotic suitable for incorporation in dairy functional foods and feed applications.
Collapse
Affiliation(s)
- Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Nini Dai
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Fan Yang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Haimei Zhu
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| |
Collapse
|
6
|
Petrariu OA, Barbu IC, Niculescu AG, Constantin M, Grigore GA, Cristian RE, Mihaescu G, Vrancianu CO. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front Microbiol 2024; 14:1296447. [PMID: 38249451 PMCID: PMC10797027 DOI: 10.3389/fmicb.2023.1296447] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria. This review presents an update on using probiotics in managing and treating various human diseases, including complications that may emerge during or after a COVID-19 infection.
Collapse
Affiliation(s)
- Oana-Alina Petrariu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
7
|
Mujdeci GN, Tanguler H, Macit H, Kabak B. Effect of Three Different Preservatives on the Microbiota of Shalgam, a Traditional Lactic Acid Fermented Beverage. Foods 2023; 12:4075. [PMID: 38002133 PMCID: PMC10670735 DOI: 10.3390/foods12224075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Shalgam is a traditional Turkish beverage derived from the natural fermentation of purple carrots (Daucus carota) that boasts valuable antioxidant and prebiotic properties. These features of shalgam increase efforts to enhance its shelf life and ensure safe consumption. In this study, the effects of three different preservatives (sodium benzoate, potassium sorbate, or natamycin) on the physicochemical and microbiological properties of shalgam produced at laboratory scale and stored at room temperature for six months were investigated. Each preservative was used in four different concentrations (25, 100, 400, and 800 mg/L) to assess their impacts on the population of lactic acid bacteria (LAB) and yeast. After determining the total acidity and pH of the samples, colorimetric measurements were performed. The isolated LAB were defined using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) method. The addition of preservatives did not significantly affect the pH of the shalgam samples (3.44-3.52) compared to the control sample (3.43). However, a slight increase was observed in the total acidity of preservative-treated samples, with the highest level (5.61 g/L lactic acid) recorded in samples containing 100 mg/L sodium benzoate. Lacticaseibacillus paracasei subsp. paracasei, which has the potential to impart probiotic properties to shalgam, was the predominant LAB species in both non-treated and preservative-treated samples. The use of preservatives significantly reduced the total number of yeasts, which may cause spoilage in shalgam. The results indicate that using sodium benzoate at a concentration of 100 mg/L is the optimum method for shalgam production, resulting in the highest total acidity value obtained. Overall, the findings provide a significant contribution to prolonging the shelf life of shalgam, a beverage with immense production and consumption potential worldwide.
Collapse
Affiliation(s)
- Gamze Nur Mujdeci
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum 19030, Turkey;
- Biotechnology Laboratory, Machinery and Manufacturing Technology Application and Research Center, Hitit University, Corum 19030, Turkey
| | - Hasan Tanguler
- Department of Food Engineering, Faculty of Engineering, Niğde Ömer Halisdemir University, Niğde 51240, Turkey
| | - Hasan Macit
- Department of Food Engineering, Faculty of Engineering, Niğde Ömer Halisdemir University, Niğde 51240, Turkey
| | - Bulent Kabak
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum 19030, Turkey;
- Biotechnology Laboratory, Machinery and Manufacturing Technology Application and Research Center, Hitit University, Corum 19030, Turkey
| |
Collapse
|
8
|
Liu C, Liu X, Sun Y, Qi X, Ma Y, Wang R. Anti-inflammatory probiotic Lactiplantibacillus plantarum HF05 screening from Qula: Genomic analysis and alleviating effect on intestinal inflammation. FOOD BIOSCI 2023; 55:103002. [DOI: 10.1016/j.fbio.2023.103002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Hati S, Ramanuj K, Basaiawmoit B, Sreeja V, Maurya R, Bishnoi M, Kondepudi KK, Mishra B. Safety aspects, probiotic potentials of yeast and lactobacillus isolated from fermented foods in North-Eastern India, and its anti-inflammatory activity. Braz J Microbiol 2023; 54:2073-2091. [PMID: 37612545 PMCID: PMC10485210 DOI: 10.1007/s42770-023-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Lactobacillus and yeast obtained from fermented foods in North-East India were tested for safety and probiotic properties. All the lactobacilli and yeast tested negative for the catalase, indole, urease, phenylalanine, hemolysis, gelatin hydrolysis, and biogenic amine production tests, indicating that they are safe to use as probiotics in food supplements. Lactiplantibacillus plantarum KGL3A (accession no. MG722814) was capable of resisting the replicated gastric fluid (pH 2) till 2 h of exposure, whereas both KGL3A and Lacticaseibacillus rhamnosus K4E (accession no. KX950834.1) strains were able to resist pH 3 till 2 h of exposure with a reduction in overall viable cell count from 7.48 log CFU/mL to 1.09 log CFU/mL and 7.77 log CFU/mL to 0.83 log CFU/mL, respectively. In vitro gastric juice simulation conditions were tolerated by the yeast Saccharomyces cerevisiae WBS2A. The cell surface hydrophobicity (CSH) towards hydrocarbons (n-hexadecane) was seen highest in L. plantarum KGL3A (77.16± 0.84%) and Limosilactobacillus fermentum KGL4 accession no. MF951099 (72.60 ± 2.33%). The percentage auto-aggregation ranged from 8.70 to 25.53 after 2 h, which significantly increased to 10.50 to 26.94 during the fifth hour for cultures. Also, a higher percentage of co-aggregation was found for the culture L. rhamnosus K4E with S. typhi (34.18 ± 0.03%), E. coli (32.97 ± 0.02 %) and S. aureus (26.33 ± 0.06 %) and for the yeast S. cerevisiae WBS2A, a higher percentage of co-aggregation was found with Listeria monocytogenes (25.77 ± 0.22%). The antioxidant activity and proteolytic activity were found to be higher for Lactobacillus helveticus K14 and L. rhamnosus K4E. The proportion of decreased cholesterol was noticeably higher in KGL4 (29.65 ± 4.30%). β glucosidase activity was significantly higher in the L. fermentum KGL4 strain (0.359 ± 0.002), and α galactosidase activity was significantly higher in the L. rhamnosus K4E strain (0.415 ± 0.016). MTT assays suggested that KGL4 and WBS2A at a lower dose did not exhibit cytotoxicity.
Collapse
Affiliation(s)
- Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Krupali Ramanuj
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Tura, Meghalaya, India
| | - V Sreeja
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Birendrakumar Mishra
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Tura, Meghalaya, India.
| |
Collapse
|
10
|
Latif A, Shehzad A, Niazi S, Zahid A, Ashraf W, Iqbal MW, Rehman A, Riaz T, Aadil RM, Khan IM, Özogul F, Rocha JM, Esatbeyoglu T, Korma SA. Probiotics: mechanism of action, health benefits and their application in food industries. Front Microbiol 2023; 14:1216674. [PMID: 37664108 PMCID: PMC10470842 DOI: 10.3389/fmicb.2023.1216674] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Probiotics, like lactic acid bacteria, are non-pathogenic microbes that exert health benefits to the host when administered in adequate quantity. Currently, research is being conducted on the molecular events and applications of probiotics. The suggested mechanisms by which probiotics exert their action include; competitive exclusion of pathogens for adhesion sites, improvement of the intestinal mucosal barrier, gut immunomodulation, and neurotransmitter synthesis. This review emphasizes the recent advances in the health benefits of probiotics and the emerging applications of probiotics in the food industry. Due to their capability to modulate gut microbiota and attenuate the immune system, probiotics could be used as an adjuvant in hypertension, hypercholesterolemia, cancer, and gastrointestinal diseases. Considering the functional properties, probiotics are being used in the dairy, beverage, and baking industries. After developing the latest techniques by researchers, probiotics can now survive within harsh processing conditions and withstand GI stresses quite effectively. Thus, the potential of probiotics can efficiently be utilized on a commercial scale in food processing industries.
Collapse
Affiliation(s)
- Anam Latif
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Aamir Shehzad
- UniLaSalle, Univ. Artois, ULR7519 - Transformations & Agro-resources, Normandie Université, Mont-Saint-Aignan, France
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Asna Zahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Waqas Ashraf
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Mahmood Khan
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Türkiye
| | - João Miguel Rocha
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
Bu Y, Liu Y, Liu Y, Cao J, Zhang Z, Yi H. Protective Effects of Bacteriocin-Producing Lactiplantibacillus plantarum on Intestinal Barrier of Mice. Nutrients 2023; 15:3518. [PMID: 37630708 PMCID: PMC10459803 DOI: 10.3390/nu15163518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Bacteriocins are crucial metabolites of probiotics that display beneficial functions. The intestinal barrier is an important target on which probiotics exert their intestinal health activity. However, the impacts of bacteriocin-producing probiotics on the intestinal barrier are unclear. In this study, the effects of bacteriocin-producing Lactiplantibacillus plantarum Q7 and L. plantarum F3-2 on the intestinal barrier of mice were explored. It was shown that L. plantarum Q7 promoted the expression of mucin MUC2 to enhance the protection provided by the intestinal mucus layer. L. plantarum Q7 up-regulated the gene expression of intestinal tight junction proteins ZO-1 and JAM-1 significantly, and L. plantarum F3-2 up-regulated ZO-1 and Claudin-1 markedly, which exhibited tight junction intestinal barrier function. The two strains promoted the release of IgA and IgG at varying degrees. The antimicrobial peptide gene RegIIIγ was up-regulated markedly, and the gene expression of inflammatory cytokines appeared to exhibit an upward trend with L. plantarum Q7 treatment, so as to enhance intestinal immune regulation function. Furthermore, L. plantarum Q7 and L. plantarum F3-2 increased the abundance of the beneficial bacteria Muribaculaceae, inhibited the growth of the harmful bacteria Parabacteroides, and facilitated the synthesis of total short-chain fatty acids (SCFAs), which seemed to favor the prevention of metabolic diseases. Our results suggested that L. plantarum Q7 and L. plantarum F3-2 showed strain specificity in their protective effects on the intestinal chemical, physical, immunological and biological barriers of mice, which provided theoretical support for the selective utilization of bacteriocin-producing strains to regulate host health.
Collapse
Affiliation(s)
- Yushan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yisuo Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yinxue Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
| | - Jiayuan Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
12
|
Bu Y, Liu Y, Zhang T, Liu Y, Zhang Z, Yi H. Bacteriocin-Producing Lactiplantibacillus plantarum YRL45 Enhances Intestinal Immunity and Regulates Gut Microbiota in Mice. Nutrients 2023; 15:3437. [PMID: 37571374 PMCID: PMC10421436 DOI: 10.3390/nu15153437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Bacteriocins production is one of important beneficial characteristics of probiotics, which has antibacterial property against intestinal pathogens and is helpful for regulating intestinal flora. To investigate the impact of bacteriocin-producing probiotics on gut microecology, bacteriocin-producing Lactiplantibacillus plantarum YRL45 was orally administered to mice. The results revealed that it promoted the release of cytokines and improved the phagocytic activity of peritoneal macrophages to activate the immune regulation system. L. plantarum YRL45 was conducive to maintaining the morphology of colon tissue without inflammation and increasing the ratio of villus height to crypt depth in the ileum. The gene expression levels of Muc2, ZO-1 and JAM-1 were significantly up-regulated in the ileum and colon, and the gene expression of Cramp presented an upward trend with L. plantarum YRL45 intervention. Moreover, L. plantarum YRL45 remarkably enhanced the levels of immunoglobulins sIgA, IgA and IgG in the intestine of mice. The 16S rRNA gene analysis suggested that L. plantarum YRL45 administration up-regulated the relative abundance of the beneficial bacteria Muribaculaceae and Akkermansia, down-regulated the abundance of the pathogenic bacteria Lachnoclostridium, and promoted the production of acetic acid, propionic acid and total short-chain fatty acids (SCFAs) in mice feces. Our findings indicated that L. plantarum YRL45 had the potential to be developed as a novel probiotic to regulate the intestinal barrier by altering gut microbiota to enhance intestinal immunity and ameliorate intestinal flora balance.
Collapse
Affiliation(s)
- Yushan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yisuo Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Tai Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yinxue Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
13
|
Guryanova SV. Immunomodulation, Bioavailability and Safety of Bacteriocins. Life (Basel) 2023; 13:1521. [PMID: 37511896 PMCID: PMC10381439 DOI: 10.3390/life13071521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The rise of antibiotic-resistant bacteria and the emergence of new pathogens have created a need for new strategies to fight against infectious diseases. One promising approach is the use of antimicrobial peptides produced by a certain species of bacteria, known as bacteriocins, which are active against other strains of the same or related species. Bacteriocins can help in the treatment and prevention of infectious diseases. Moreover, bacteriocins can be obtained in prokaryotic organisms, and contribute s to their widespread use. While the use of bacteriocins is currently limited to the food industry (for example, nisin is used as a preservative, E234), a large number of studies on their microbicidal properties suggest that their use in medicine may increase in the foreseeable future. However, for the successful use of bacteriocins in medicine, it is necessary to understand their effect on the immune system, especially in cases where immunity is weakened due to infectious processes, oncological, allergic, or autoimmune diseases. Studies on the immuno-modulatory activity of bacteriocins in animal models and human cells have revealed their ability to induce both pro-inflammatory and anti-inflammatory factors involved in the implementation of innate immunity. The influence of bacteriocins on acquired immunity is revealed by an increase in the number of T-lymphocytes with a simultaneous decrease in B-lymphocyte levels, which makes them attractive substances for reducing inflammation. The widespread use of bacteriocins in the food industry, their low toxicity, and their broad and narrow specificity are reasons for researchers to pay attention to their immunomodulatory properties and explore their medical applications. Inflammation regulation by bacteriocins can be used in the treatment of various pathologies. The aim of the review was to analyze scientific publications on the immunomodulatory activity, bioavailability, and safety of bacteriocins in order to use the data obtained to organize preclinical and clinical studies.
Collapse
Affiliation(s)
- Svetlana V Guryanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Medical Institute, Peoples' Friendship University of Russia (RUDN University) of the Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
14
|
Deng L, Liu L, Fu T, Li C, Jin N, Zhang H, Li C, Liu Y, Zhao C. Genome Sequence and Evaluation of Safety and Probiotic Potential of Lactiplantibacillus plantarum LPJZ-658. Microorganisms 2023; 11:1620. [PMID: 37375122 DOI: 10.3390/microorganisms11061620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
This study aims to systematically evaluate the safety of a novel L. plantarum LPJZ-658 explored on whole-genome sequence analysis, safety, and probiotic properties assessment. Whole genome sequencing results demonstrated that L. plantarum LPJZ-658 consists of 3.26 Mbp with a GC content of 44.83%. A total of 3254 putative ORFs were identified. Of note, a putative bile saline hydrolase (BSH) (identity 70.4%) was found in its genome. In addition, the secondary metabolites were analyzed, and one secondary metabolite gene cluster was predicted to consist of 51 genes, which verified its safety and probiotic properties at the genome level. Additionally, L. plantarum LPJZ-658 exhibited non-toxic and non-hemolytic activity and was susceptible to various tested antibiotics, indicating that L. plantarum LPJZ-658 was safe for consumption. Moreover, the probiotic properties tests confirm that L. plantarum LPJZ-658 also exhibits tolerance to acid and bile salts, preferably hydrophobicity and auto-aggregation, and excellent antimicrobial activity against both Gram-positive and Gram-negative gastrointestinal pathogens. In conclusion, this study confirmed the safety and probiotic properties of L. plantarum LPJZ-658, suggesting it can be used as a potential probiotic candidate for human and animal applications.
Collapse
Affiliation(s)
- Liquan Deng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Tongyu Fu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Heping Zhang
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010010, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yawen Liu
- School of Public Health, Jilin University, Changchun 130021, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| |
Collapse
|
15
|
Koduru L, Lakshmanan M, Lee YQ, Ho PL, Lim PY, Ler WX, Ng SK, Kim D, Park DS, Banu M, Ow DSW, Lee DY. Systematic evaluation of genome-wide metabolic landscapes in lactic acid bacteria reveals diet- and strain-specific probiotic idiosyncrasies. Cell Rep 2022; 41:111735. [PMID: 36476869 DOI: 10.1016/j.celrep.2022.111735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) are well known to elicit health benefits in humans, but their functional metabolic landscapes remain unexplored. Here, we analyze differences in growth, intestinal persistence, and postbiotic biosynthesis of six representative LAB and their interactions with 15 gut bacteria under 11 dietary regimes by combining multi-omics and in silico modeling. We confirmed predictions on short-term persistence of LAB and their interactions with commensals using cecal microbiome abundance and spent-medium experiments. Our analyses indicate that probiotic attributes are both diet and species specific and cannot be solely explained using genomics. For example, although both Lacticaseibacillus casei and Lactiplantibacillus plantarum encode similarly sized genomes with diverse capabilities, L. casei exhibits a more desirable phenotype. In addition, "high-fat/low-carb" diets more likely lead to detrimental outcomes for most LAB. Collectively, our results highlight that probiotics are not "one size fits all" health supplements and lay the foundation for personalized probiotic design.
Collapse
Affiliation(s)
- Lokanand Koduru
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Yi Qing Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Pooi-Leng Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Pei-Yu Lim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Wei Xuan Ler
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Dongseok Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Doo-Sang Park
- Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Mazlina Banu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Dave Siak Wei Ow
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore.
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|