1
|
Song R, Shen M, Wang Y, Sun Y, Ma J, Deng Q, Ren X, Li X, Zheng Y, He Y, Zhang F, Li M, Yao J, Sun M, Liu W, She G. Correlation analysis and modeling application from objective indicators to subjective evaluation of scented tea: A case study of rose tea. Food Chem 2025; 462:140963. [PMID: 39208739 DOI: 10.1016/j.foodchem.2024.140963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Different scented teas provide various choices for consumers from appearance, aroma, flavor and others. Aiming to define advantages and market positions of different scented teas and promote optimization of market structure, characteristics for scented tea favored by consumers and outstanding attributes of different scented teas should be clarified. Rose tea was taken as study object. Sensory evaluation and consumer acceptance were investigated. GC-MS and HPLC fingerprints were established. Physicochemical characteristics were determined. RGB integration analysis was inventively proposed for correlation analysis. The volatile compounds with spicy, green or herbal odor as camphene, β-phenethyl acetate, eugenol, and physicochemical parameters as antioxidant capacity, reducing sugar content, pH showed positive correlation with popular sensory properties. Six models for consumer preference by objective description were built through GA-SVR (accuracy = 1), and APP was developed. The research mode of scented tea has been successfully established to study multiple subjective characteristics with measurable objective parameters.
Collapse
Affiliation(s)
- Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Meng Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Youyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Xiao Y, Zhang S, Wang X, Zhao X, Liu Z, Chu C, Wang Y, Hu X, Yi J. Characterization of key aroma-active compounds in fermented chili pepper ( Capsicum frutescens L.) using instrumental and sensory techniques. Food Chem X 2024; 23:101581. [PMID: 39040151 PMCID: PMC11260950 DOI: 10.1016/j.fochx.2024.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
The aroma profile of fermented chili pepper was analyzed using gas chromatography-mass spectrometry (GC-MS) coupled with chromatography-olfactometry (GC-O). A total of 19 aroma-active compounds were detected, exhibiting aroma intensities spanning from 1.8 to 4.2. And 12 aroma-active compounds were determined as pivotal odorants through odor activity value (OAV) calculation. Concentrations of these aroma-active compounds were quantified and subsequently employed in reconstructing the aroma profile of fermented chili pepper. Quantitative descriptive sensory analysis and electronic nose analysis proved that the aroma profile of fermented chili pepper was basically reconstituted. Omission experiments confirmed that methyl salicylate, linalool, 2-methoxy-3-isobutylpyrazine, and phenylethyl alcohol were the key aroma-active compounds of fermented chili pepper. Moreover, the perceptual interactions between the key aroma-active compounds were investigated. It was found that methyl salicylate masked the floral aroma, while phenylethyl alcohol had an additive effect on the aroma of linalool and 2-methoxy-3-isobutylpyrazine.
Collapse
Affiliation(s)
- Yue Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xinyu Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xinyi Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
3
|
Chen G, Zhu G, Xie H, Zhang J, Huang J, Liu Z, Wang C. Characterization of the key differential aroma compounds in five dark teas from different geographical regions integrating GC-MS, ROAV and chemometrics approaches. Food Res Int 2024; 194:114928. [PMID: 39232540 DOI: 10.1016/j.foodres.2024.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Dark tea (DT) holds a rich cultural history in China and has gained sizeable consumers due to its unique flavor and potential health benefits. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS), relative odor activity value (ROAV), and chemometrics approaches were used to detect and analyze aroma compounds differences among five dark teas from different geographical regions. The results revealed that the five DTs from different geographical regions differed in types, quantities, and relative concentrations of volatile compounds. A total of 1372 volatile compounds of were identified in the 56 DT samples by HS-SPME-GC-MS. Using ROAV and chemometrics approaches, based on ROAV>1 and VIP>1. Eighteen key aroma compounds can be used as potential indicators for DT classification, including dihydroactinidiolide, linalool, 1,2,3-trimethoxybenzene, geranyl acetone, 1,2,4-trimethoxybenzene, cedrol, 3,7-dimethyl-1,5,7-octatrien-3-ol, β-ionone, 4-ethyl-1,2-dimethoxybenzene, methyl salicylate, α-ionone, geraniol, linalool oxide I, linalool oxide II, 6-methyl-5-hepten-2-one, α-terpineol, 1,2,3-trimethoxy-5-methylbenzene, and 1,2-dimethoxybenzene. These compounds provide a certain theoretical basis for distinguishing the differences in five DTs from different geographical regions. This study provides a potential method for identifying the volatile substances in DTs and elucidating the differences in key aroma compounds. Abbreviations: DT, dark tea; FZT, Fuzhuan tea; LPT, Guangxi Liupao tea; QZT, Hubei Qingzhuan tea; TBT, Sichuan Tibetan tea; PET, Yunnan Pu-erh tea; ROAV, Relative odor activity value; OT, Odor threshold; HS-SPME, Headspace solid-phase microextraction; GC-MS, Gas chromatography-mass spectrometry; PCA, Principal components analysis; PLS-DA, Partial least squares-discriminant analysis; HCA, Hierarchical clustering analysis.
Collapse
Affiliation(s)
- Guohe Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Guangmei Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - He Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jing Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha 410128, China; Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha 410128, China; Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Chao Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Hunan Agricultural University, Changsha 410128, China; Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Xiao Y, Liu S, Zeng L, Zhou C, Peng Y, Wu Y, Yin X, Peng G. Effects of processing methods on the aroma of Poria cocos and its changing regulations during processing. Food Chem 2024; 448:139151. [PMID: 38547709 DOI: 10.1016/j.foodchem.2024.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/24/2024]
Abstract
Poria cocos is a natural source of fungal food raw materials. Processing method is a key effecting the aroma of Poria cocos. In this study, the aroma compounds of Poria cocos products processed using sweating-low-temperature drying (SW-LD), sweating-high-temperature drying (SW-HD), steaming-low-temperature drying (ST-LD), and steaming-high-temperature drying (ST-HD) were compared by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS), and the changes in aroma compounds of Poria cocos products during processing were analyzed. GC-MS analysis showed SW-HD product had highest content of aroma compounds. Aroma activity value (OAV) analysis indicated that 9 aroma compounds contributed to the overall aroma of Poria cocos. Among 9 compounds of Poria cocos, 1-octen-3-ol, hexanal, nonanal, octanal, trans-2-octenal, and heptanal contributed to mushroom, refreshing, sweet and fatty characters. In addition, the aroma compound changes during the processing were analyzed, revealing that steaming and sweating were the key processes affecting the aroma of Poria cocos products. The findings of this study provide valuable theoretical guidance for the development of Poria cocos processing technology.
Collapse
Affiliation(s)
- Yangbo Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China
| | - Shu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Luzhi Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China
| | - Churen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China
| | - Yisi Peng
- Hunan Agricultural University, Changsha 410128, China; Huaihua Engineering and Technology Research Center for Standardized Cultivation and Origin Sulfur-free Drying of Chinese herbal medicine, Huaihua 418400, China; Jingzhou Kangyuan Lingye Technology Co., Ltd., Huaihua 418400, China
| | - Yu Wu
- Hunan Agricultural University, Changsha 410128, China; Huaihua Engineering and Technology Research Center for Standardized Cultivation and Origin Sulfur-free Drying of Chinese herbal medicine, Huaihua 418400, China; Jingzhou Kangyuan Lingye Technology Co., Ltd., Huaihua 418400, China
| | - Xia Yin
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Guoping Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China; Huaihua Engineering and Technology Research Center for Standardized Cultivation and Origin Sulfur-free Drying of Chinese herbal medicine, Huaihua 418400, China; Jingzhou Kangyuan Lingye Technology Co., Ltd., Huaihua 418400, China.
| |
Collapse
|
5
|
Yin X, Xiao Y, Wang K, Wu W, Huang J, Liu S, Zhang S. Effect of shaking manners on floral aroma quality and identification of key floral-aroma-active compounds in Hunan black tea. Food Res Int 2023; 174:113515. [PMID: 37986507 DOI: 10.1016/j.foodres.2023.113515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
Shaking is a key process effecting the floral aroma of Hunan black tea (HBT). In this study, the aroma composition of HBTs shaken in the early withering stage (ES1, ES1 + LS1, and ES2), shaken in the late withering stage (LS1), and not shaken (NS), and the identification of main floral aroma compounds were analyzed using sensory evaluation combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and aroma recombination experiments. Sensory evaluation results showed that the floral aroma of HBT shaken in the early withering stage was with high intensity, whereas HBT shaken in the late withering stage had low-intensity floral aroma. GC-MS identified a total number of 81 differential volatile compounds in HBT, including 30 esters, 18 aldehydes, 15 alcohols, 12 terpenes, 4 ketones, and 2 nitrogen-containing compounds. Further screening of important floral aroma differential compounds was performed using sensory-guided, odor activity value (OAV), and GC-O analysis, which identified three critical floral aroma differential compounds. Eventually, absolute quantification analysis and aroma recombination experiments confirmed that indole and methyl jasmonate were the most critical compounds of HBT determining floral aroma intensity. The findings of this study provide valuable guidance for the production of HBT with rich floral aroma attributes.
Collapse
Affiliation(s)
- Xia Yin
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Yangbo Xiao
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Kuofei Wang
- Key Lab of Tea Science of Education Ministry, Hunan Agricultural University, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Wenliang Wu
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Jing Huang
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Shujuan Liu
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Shuguang Zhang
- Department of Tea Quality Chemistry and Nutrition Health/Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China.
| |
Collapse
|
6
|
Liu J, Zhao H, Yin Z, Dong H, Chu X, Meng X, Li Y, Ding X. Application and prospect of metabolomics-related technologies in food inspection. Food Res Int 2023; 171:113071. [PMID: 37330829 DOI: 10.1016/j.foodres.2023.113071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Food inspection covers a broad range of topics, including nutrient analysis, food pollutants, food auxiliary materials, additives, and food sensory identification. The foundation of diverse subjects like food science, nutrition, health research, and the food industry, as well as the desired reference for drafting trade and food legislation, makes food inspection highly significant. Because of their high efficiency, sensitivity, and accuracy, instrumental analysis methods have gradually replaced conventional analytical methods as the primary means of food hygiene inspection. SCOPE AND APPROACH Metabolomics-based analysis technology, such as nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and capillary electrophoresis-mass spectrometry (CE-MS), has become a widely used analytics platform. This research provides a bird's eye view of the application and future of metabolomics-related technologies in food inspection. KEY FINDINGS AND CONCLUSIONS We have provided a summary of the features and the application range of various metabolomics techniques, the strengths and weaknesses of different metabolomics platforms, and their implementation in specific inspection procedures. These procedures encompass the identification of endogenous metabolites, the detection of exogenous toxins and food additives, analysis of metabolite alterations during processing and storage, as well as the recognition of food adulteration. Despite the widespread utilization and significant contributions of metabolomics-based food inspection technologies, numerous challenges persist as the food industry advances and technology continues to improve. Thus, we anticipate addressing these potential issues in the future.
Collapse
Affiliation(s)
- Jiazong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Hongyang Dong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Xiaomeng Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Xuanlin Meng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China; Shanghai Jiao Tong University, 200030 Shanghai, PR China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| |
Collapse
|
7
|
Hao Z, Feng J, Chen Q, Lin H, Zhou X, Zhuang J, Wang J, Tan Y, Sun Z, Wang Y, Yu B. Comparative volatiles profiling in milk-flavored white tea and traditional white tea Shoumei via HS-SPME-GC-TOFMS and OAV analyses. Food Chem X 2023; 18:100710. [PMID: 37397202 PMCID: PMC10314143 DOI: 10.1016/j.fochx.2023.100710] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/04/2023] Open
Abstract
White tea is a mildly fermented tea processed with withering and drying. Milk-flavored white tea has a unique milk flavor compared to the traditional white tea. Little is known about the aromas that make white tea taste milky. Here we conducted the volatile profiling via headspace solid-phase microextraction (HS-SPME)-gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) and chemometrics to explore the key volatiles making milk-flavored white tea taste milky. Sixty-seven volatiles were identified, with 7 volatiles (OAV > 1 and VIP > 1) were characterized as the typical aromas. Green and light fruity scent volatiles, such as methyl salicylate, benzyl alcohol, and phenylethyl alcohol, were richer in TFs than MFs. Strong fruity and cheese aromas, such as dihydro-5-pentyl-2(3H)-furanone, 2-pentyl-furan, (E)-6,10-dimethyl-5,9-undecadien-2-one, and hexanal, were more abundant in MFs than TFs. Dihydro-5-pentyl-2(3H)-furanone, recognized as coconut and creamy aroma, should be the essential volatile for milky flavor. Also, (E)-6,10-dimethyl-5,9-undecadien-2-one and 2-pentyl-furan may contribute to the milk scent formation.
Collapse
Affiliation(s)
- Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, Fujian, China
| | - Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qianlian Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jinyuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yanping Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhilin Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yanfei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Bugui Yu
- Zhenghe Ruiming Tea Co., LTD, Zhenghe 353600, Fujian, China
| |
Collapse
|
8
|
Liu X, Ma J, Fan G. Microbiological Safety and Quality of Fermented Products. Foods 2023; 12:foods12112204. [PMID: 37297449 DOI: 10.3390/foods12112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Fermented foods, which have emerged fortuitously over the course of human development, have become an essential part of human history worldwide [...].
Collapse
Affiliation(s)
- Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinghao Ma
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Guangsen Fan
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
9
|
Luo Y, Zhang Y, Qu F, Qian W, Wang P, Zhang X, Zhang X, Hu J. Variations of main quality components of matcha from different regions in the Chinese market. Front Nutr 2023; 10:1153983. [PMID: 36969824 PMCID: PMC10034323 DOI: 10.3389/fnut.2023.1153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Matcha has a unique aroma of seaweed-like, which is popular with Chinese consumers. In order to effectively understand and use matcha for drinks and tea products, we roundly analyzed the variation of main quality components of 11 matcha samples from different regions in the Chinese market. Most of matcha samples had lower ratio of tea polyphenols to amino acids (RTA), and the RTA of 9 samples of matcha was less than 10, which is beneficial to the formation of fresh and mellow taste of matcha. The total volatile compounds concentrations by HS-SPME were 1563.59 ~ 2754.09 mg/L, among which terpenoids, esters and alcohols were the top three volatile components. The total volatile compounds concentrations by SAFE was 1009.21 ~ 1661.98 mg/L, among which terpenoids, heterocyclic compounds and esters ranked the top three. The 147 volatile components with high concentration (>1 mg/L) and no difference between samples are the common odorants to the 11 samples of matcha. The 108 distinct odorants had differences among the matcha samples, which were important substances leading to the different aroma characteristics. Hierarchical cluster analysis (HCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) showed that 11 samples of matcha were well clustered according to different components. Japanese matcha (MT, MY, ML, MR, MJ) could be clustered into two categories. The aroma composition of Guizhou matcha (GM1, GM2) was similar to that of Japanese matcha, 45 volatile components (decanal, pyrazine, 3,5-diethyl-2-methyl-, 1-hexadecanol, etc. were its characteristic aroma components. The aroma characteristics of Shandong matcha and Japanese matcha (ML, MR, MJ) were similar, 15 volatile components (γ-terpinene, myrtenol, cis-3-hexenyl valerate, etc.) were its characteristic aroma components. While Jiangsu matcha and Zhejiang matcha have similar aroma characteristics due to 225 characteristic aroma components (coumarin, furan, 2-pentyl-, etc). In short, the difference of volatile components formed the regional flavor characteristics of matcha. This study clarified the compound basis of the flavor difference of matcha from different regions in the Chinese market, and provided a theoretical basis for the selection and application of matcha in drinks and tea products.
Collapse
Affiliation(s)
- Ying Luo
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yazhao Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Fengfeng Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Peiqiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | | | - Xinfu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jianhui Hu,
| |
Collapse
|
10
|
Ayvazyan A, Stegemann T, Galarza Pérez M, Pramsohler M, Çiçek SS. Phytochemical Profile of Trigonella caerulea (Blue Fenugreek) Herb and Quantification of Aroma-Determining Constituents. PLANTS (BASEL, SWITZERLAND) 2023; 12:1154. [PMID: 36904014 PMCID: PMC10005085 DOI: 10.3390/plants12051154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The herb of Trigonella caerulea (Fabaceae), commonly known as blue fenugreek, is used for the production of traditional cheese and bread varieties in the Alpine region. Despite its frequent consumption, only one study so far has focused on the constituent pattern of blue fenugreek, revealing qualitative information on some flavor-determining constituents. However, with regard to the volatile constituents present in the herb, the applied methods were insufficient and did not take relevant terpenoids into account. In the present study, we analyzed the phytochemical composition of T. caerulea herb applying a set of analytical methods, such as headspace-GC, GC-MS, LC-MS, and NMR spectroscopy. We thus determined the most dominant primary and specialized metabolites and assessed the fatty acid profile as well as the amounts of taste-relevant α-keto acids. In addition, eleven volatiles were quantified, of which tiglic aldehyde, phenylacetaldehyde, methyl benzoate, n-hexanal, and trans-menthone were identified as most significantly contributing to the aroma of blue fenugreek. Moreover, pinitol was found accumulated in the herb, whereas preparative works led to the isolation of six flavonol glycosides. Hence, our study shows a detailed analysis of the phytochemical profile of blue fenugreek and provides an explanation for its characteristic aroma and its health-beneficial effects.
Collapse
Affiliation(s)
- Arpine Ayvazyan
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Thomas Stegemann
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
- Botanical Institute and Botanic Gardens, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Mayra Galarza Pérez
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| | | | - Serhat Sezai Çiçek
- Department of Pharmaceutical Biology, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany
| |
Collapse
|
11
|
Wang C, Xu W, Yuan Y, Zhai Y, Hu T, Huang J, Liu Z, Li Q. Characterization and modelling of odor-active compounds release behavior from Fu-brick tea during boiling-water extraction by molecular sensory science approach. Food Chem X 2022; 17:100551. [PMID: 36845510 PMCID: PMC9943754 DOI: 10.1016/j.fochx.2022.100551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The odor-active compounds in Fu-brick tea and their release behaviors during boiling-water were studied. Fifty-one odor-active compounds were identified, and their release behaviors were identified by continuously recovering 16 sections of condensed water combined with sensory, instrumental, and nonlinear curve fitting analysis. The odor intensities of condensed water and the concentrations of odor-active compounds could be significantly fitted (p < 0.01) to power-function type curves. Hydrocarbons showed the fastest release rate, while organic acids showed the slowest. The release rates had very little correlation with their concentrations, molecular weights, and boiling points. Most odor-active compounds (≥70 %) released need to evaporate more than 24 % of the added water during boiling-water extraction. Meanwhile, on the basis of odor activity value (OAV) calculation, the aroma recombination experiments were performed to explore the odor-active compounds that made major contributions to the formation of the aroma profile of each condensed water.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Wazhen Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yuqi Yuan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yuke Zhai
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Tengfei Hu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, PR China,Corresponding author at: Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|
12
|
Hu W, Wang G, Lin S, Liu Z, Wang P, Li J, Zhang Q, He H. Digital Evaluation of Aroma Intensity and Odor Characteristics of Tea with Different Types-Based on OAV-Splitting Method. Foods 2022; 11:foods11152204. [PMID: 35892790 PMCID: PMC9329961 DOI: 10.3390/foods11152204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Aroma is one of the most important quality indicators of tea. However, this evaluation method is a subjective one. In this study, the volatiles of tea with 5 types were determined by headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography mass spectrometry (GC-MS). The aroma intensity and odor characteristics of teas were comparatively analyzed based on the OAV-splitting method. The results showed that OAV were green tea (492.02), red tea (471.88), oolong tea (302.74), white tea (68.10), and dark tea (55.98). The odor index I(o) indicated that green tea was strong-flavor tea with highlight green accompanied by fruity, woody and fatty odors; oolong tea was strong-flavor tea with fruity and fatty accompanied by woody, floral and green odors; red tea was strong-flavor tea with highlight fruity accompanied by woody, green and floral odors; white tea was a light-flavor tea with floral, woody and green odors; and dark tea was light-flavor tea with woody and floral notes accompanied by fatty and green odors. These results fitted perfectly with the people’s consensus on these teas, and proved that the OAV-splitting method is feasible to evaluate the aroma intensity and odor characteristics of tea aroma. We suggest that the digital evaluation of tea aroma can facilitate people’s communication.
Collapse
Affiliation(s)
- Wenwen Hu
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Gege Wang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Shunxian Lin
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Zhijun Liu
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Peng Wang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Jiayu Li
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Qi Zhang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
- College of Tea and Food Science, Wuyi University, Wuyishan 353400, China
| | - Haibin He
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
- Correspondence:
| |
Collapse
|