1
|
Adaile-Pérez VM, Thibodeau J, Ortiz-Basurto RI, de Lourdes García-Magaña M, Bazinet L. Enhanced antihypertensive chicken by-product hydrolysate fraction after its separation by electrodialysis with ultrafiltration membrane (EDUF). Food Res Int 2025; 202:115595. [PMID: 39967132 DOI: 10.1016/j.foodres.2024.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
The environmental impact of poultry industry waste has led to the study of hydrolysates with potential health-promoting properties obtained from poultry by-products and their fractionation to increase the bioactivity of these hydrolysates. The aim of the present study was to separate a chicken by-product hydrolysate (CBH) by electrodialysis with ultrafiltration membranes (EDUF), providing peptide selective separation based on their charge and molecular weight, and to characterize the resulting fractions. Experimental results showed that during the peptide fractionation process the global peptide migration rate (MR) from CBH was 14.97 ± 0.14 g/m2•h with a relative energy consumption of 31.27 ± 2.61 Wh/g of total peptides. 164 peptides were identified in the initial CBH, and following EDUF, 39 migrated to the positively charged peptide fraction (PCC) and 9 to the negatively charge peptide fraction (NCC): 21 sequences were reported as bioactive for CBH, 6 for PCC and 1 for NCC. Analyses of ACE inhibition evidenced a 1.4 fold increase in antihypertensive activity of the PCC (IC50 0.46 ± 0.04 mg peptides /mL) in comparison to CBH (IC50 0.65 ± 0. 04 mg peptides /mL), despite the smaller number of bioactive sequences reported and the fact that it is possible to enhance the PCC recovery by modifying the EDUF configuration in further studies. These findings highlight the significance of EDUF as a sustainable method for obtaining specifically charged peptide fractions with enhanced bioactivity from the initial hydrolysate.
Collapse
Affiliation(s)
- Vianey Monsserrat Adaile-Pérez
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico #2595 Col. Frac. Lagos del Country, C.P. 63175 Tepic, Nayarit, México
| | - Jacinthe Thibodeau
- Department of Food Science, Université Laval, Québec G1V 0A6, Canada; Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec G1V 0A6, Canada
| | - Rosa Isela Ortiz-Basurto
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico #2595 Col. Frac. Lagos del Country, C.P. 63175 Tepic, Nayarit, México
| | - María de Lourdes García-Magaña
- Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico #2595 Col. Frac. Lagos del Country, C.P. 63175 Tepic, Nayarit, México.
| | - Laurent Bazinet
- Department of Food Science, Université Laval, Québec G1V 0A6, Canada; Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
2
|
Li X, Li S, Liu Y, Cui L, Yang D, Chen S, Shao X, Yuan H, Yan X. Molecular mechanisms of cis-oxygen bridge neonicotinoids to Apis mellifera Linnaeus chemosensory protein: Surface plasmon resonance, multiple spectroscopy techniques, and molecular modeling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117719. [PMID: 39823676 DOI: 10.1016/j.ecoenv.2025.117719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/19/2025]
Abstract
Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L. chemosensory protein 3 (AmelCSP3) and neonicotinoids with a cis-oxygen bridge heterocyclic structure. Employing surface plasmon resonance (SPR) in conjunction with multispectral techniques and molecular modeling, this study meticulously analyzed the binding affinity, specificity, and kinetics under conditions that simulate real-world exposure scenarios. Key parameters such as the number of binding sites (n), binding constants (Ka), dissociation constants (KD), and binding distances (r) were quantitatively assessed. The findings revealed that hydrogen bonding and hydrophobic interactions serve as the primary forces driving the binding process, with fluorescence quenching mechanisms involving both dynamic and static interactions. Molecular docking and dynamics simulations further illustrated the stability of these interactions within the active site of the protein. Of particular interest, cis-structured neonicotinoids demonstrated distinct binding characteristics compared to their trans-structured counterparts, including an inverse relationship between the binding constant and temperature. These findings offer critical insights for the design of cis-structured neonicotinoid compounds that are safer for pollinators, thus reducing the impact on non-target organisms such as bees. Furthermore, this research enhances the understanding of the interaction mechanisms between cis-structured neonicotinoid substances and honeybee proteins, providing a foundation for future studies on the environmental safety of these compounds.
Collapse
Affiliation(s)
- Xiangshuai Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daibin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuning Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Jo DM, Khan F, Park SK, Ko SC, Kim KW, Yang D, Kim JY, Oh GW, Choi G, Lee DS, Kim YM. From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides-Mechanisms and Applications. Mar Drugs 2024; 22:449. [PMID: 39452857 PMCID: PMC11509120 DOI: 10.3390/md22100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives due to their large structural diversity and unusual bioactivities. The mechanisms by which these marine peptides inhibit ACE include competitive binding to ACEs' active site, interfering with ACE conformational changes, and avoiding the identification of substrates. The unique 3D attributes of marine peptides confer inhibition advantages toward ACE activity. Because IC50 values of marine peptides' interaction with ACE are low, structure-based research assumes that the interaction between ACE and peptides increased the therapeutic application. Numerous studies on marine peptides focused on the sustainable extraction of ACE-inhibitory peptides produced from several fish, mollusks, algae, and sponges. Meanwhile, their potential applications and medical benefits are worth investigating and considering. Due to these peptides exhibiting antioxidant, antihypertensive, and even antimicrobial properties simultaneously, their therapeutic potential for cardiovascular disease and other illnesses only increases. In addition, as marine peptides show better pharmacological benefits, they have increased absorption rates and low toxicity and could perhaps be modified for better stability and bioefficacy. Biotechnological advances in peptide synthesis and formulation have greatly facilitated the generation of peptide-based ACE inhibitors from marine sources, which subsequently offer new treatment models. This article gives a complete assessment of the present state of knowledge about marine organism peptides as ACE inhibitors. In addition, it emphasizes the relevance of additional investigation into their mechanisms of action, the optimization of manufacturing processes, and assessment in in vivo, preclinical, and clinical settings, underlining the urgency and value of this study. Using marine peptides for ACE inhibition not only broadens the repertory of bioactive compounds but also shows promise for tackling the global health burden caused by cardiovascular diseases.
Collapse
Affiliation(s)
- Du-Min Jo
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| | - Seok-Chun Ko
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Kyung Woo Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Dongwoo Yang
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Ji-Yul Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Gun-Woo Oh
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Grace Choi
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Dae-Sung Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Wang B, Zhang H, Wen Y, Yuan W, Chen H, Lin L, Guo F, Zheng ZP, Zhao C. The novel angiotensin-I-converting enzyme inhibitory peptides from Scomber japonicus muscle protein hydrolysates: QSAR-based screening, molecular docking, kinetic and stability studies. Food Chem 2024; 447:138873. [PMID: 38452536 DOI: 10.1016/j.foodchem.2024.138873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
Food-derived angiotensin-converting enzyme-inhibitory (ACE-I) peptides have attracted extensive attention. Herein, the ACE-I peptides from Scomber japonicus muscle hydrolysates were screened, and their mechanisms of action and inhibition stability were explored. The quantitative structure-activity relationship (QSAR) model based on 5z-scale metrics was developed to rapidly screen for ACE-I peptides. Two novel potential ACE-I peptides (LTPFT, PLITT) were predicted through this model coupled with in silico screening, of which PLITT had the highest activity (IC50: 48.73 ± 7.59 μM). PLITT inhibited ACE activity with a mixture of non-competitive and competitive mechanisms, and this inhibition mainly contributed to the hydrogen bonding based on molecular docking study. PLITT is stable under high temperatures, pH, glucose, and NaCl. The zinc ions (Zn2+) and copper ions (Cu2+) enhanced ACE-I activity. The study suggests that the QSAR model is effective in rapidly screening for ACE-I inhibitors, and PLITT can be supplemented in foods to lower blood pressure.
Collapse
Affiliation(s)
- Baobei Wang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; Key Laboratory of Inshore Resources and Biotechnology Fujian Province University, Quanzhou 362000, China.
| | - Hui Zhang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenwen Yuan
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Hongbin Chen
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; Key Laboratory of Inshore Resources and Biotechnology Fujian Province University, Quanzhou 362000, China.
| | - Luan Lin
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; Key Laboratory of Inshore Resources and Biotechnology Fujian Province University, Quanzhou 362000, China.
| | - Fengxian Guo
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; Key Laboratory of Inshore Resources and Biotechnology Fujian Province University, Quanzhou 362000, China.
| | - Zong-Ping Zheng
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; Key Laboratory of Inshore Resources and Biotechnology Fujian Province University, Quanzhou 362000, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Yang Z, Wang C, Huang B, Chen Y, Liu Z, Chen H, Chen J. Biodirected Screening and Preparation of Larimichthys crocea Angiotensin-I-Converting Enzyme-Inhibitory Peptides by a Combined In Vitro and In Silico Approach. Molecules 2024; 29:1134. [PMID: 38474646 DOI: 10.3390/molecules29051134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Food-derived angiotensin-I-converting enzyme (ACE)-inhibitory peptides have gained attention for their potent and safe treatment of hypertensive disorders. However, there are some limitations of conventional methods for preparing ACE-inhibitory peptides. In this study, in silico hydrolysis, the quantitative structure-activity relationship (QSAR) model, LC-MS/MS, inhibition kinetics, and molecular docking were used to investigate the stability, hydrolyzability, in vitro activity, and inhibition mechanism of bioactive peptides during the actual hydrolysis process. Six novel ACE-inhibitory peptides were screened from the Larimichthys crocea protein (LCP) and had low IC50 values (from 0.63 ± 0.09 µM to 10.26 ± 0.21 µM), which were close to the results of the QSAR model. After in vitro gastrointestinal simulated digestion activity of IPYADFK, FYEPFM and NWPWMK were found to remain almost unchanged, whereas LYDHLGK, INEMLDTK, and IHFGTTGK were affected by gastrointestinal digestion. Meanwhile, the inhibition kinetics and molecular docking results were consistent in that ACE-inhibitory peptides of different inhibition forms could effectively bind to the active or non-central active centers of ACE through hydrogen bonding. Our proposed method has better reproducibility, accuracy, and higher directivity than previous methods. This study can provide new approaches for the deep processing, identification, and preparation of Larimichthys crocea.
Collapse
Affiliation(s)
- Zhizhi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changrong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baote Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China
| | - Hongbin Chen
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China
| | - Jicheng Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Lin X, Dong L, Yan Q, Dong Y, Wang L, Wang F. Preparation and Characterization of an Anticancer Peptide from Oriental Tonic Food Enteromorpha prolifera. Foods 2022; 11:3507. [PMID: 36360120 PMCID: PMC9657784 DOI: 10.3390/foods11213507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 03/06/2024] Open
Abstract
Enteromorpha prolifera (E. prolifera), a tonic food in East Asian countries, is frequently studied for their pharmaceutical and healthcare applications. However, limited research has focused on antitumor peptides derived from this edible seaweed. In this study, we aimed to investigate the anticancer properties of peptides isolated from the hydrolysate of E. prolifera generated by a plethora of proteases including trypsin, papain, bromelain, and alkaline protease. The results showed that the hydrolysate produced by papain digestion exhibited remarkably stronger anticancer activity and was subjected to further purification by ultrafiltration and sequential chromatography. One heptapeptide, designated HTDT-6-2-3-2, showed significant antiproliferation activity towards several human cancer cell lines. The IC50 values for NCI-H460, HepG2, and A549 were 0.3686 ± 0.0935 mg/mL, 1.2564 ± 0.0548 mg/mL, and 0.9867 ± 0.0857 mg/mL, respectively. Moreover, results from flow cytometry confirmed that cell apoptosis was induced by HTDT-6-2-3-2 in a dose-dependent manner. The amino acid sequence for this heptapeptide, GPLGAGP, was characterized by Edman degradation and further verified by Liquid Chromatography-Tandem Mass Spectrometry. In silico analysis results suggested that XIAP could be a potential target for HTDT-6-2-3-2. Molecular docking simulation showed that HTDT-6-2-3-2 could occupy a shallow pocket in the BIR3 domain of XIAP, which is involved in the inhibitory effect of caspase-9 activation. In conclusion, this E. prolifera derived peptide exhibited strong anticancer properties, which could be explored for pharmaceutical applications.
Collapse
Affiliation(s)
- Xiaosi Lin
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Le Dong
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Qingdan Yan
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Yibo Dong
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Li Wang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Fang Wang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, China
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
7
|
Qian Z, Peng T, Huang T, Hu Z. Oxidization of benzo[a]pyrene by CYP102 in a novel PAHs-degrader Pontibacillus sp. HN14 with potential application in high salinity environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115922. [PMID: 36027730 DOI: 10.1016/j.jenvman.2022.115922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Benzo [a]pyrene (BaP) is a type of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) with potent carcinogenicity; however, there are limited studies on its degradation mechanism. Here, a strain of Pontibacillus sp. HN14 with BaP degradation ability was isolated from mangrove sediments in Dongzhai Port, Hainan Province. Our study showed that biodegradation efficiencies reached 42.15% after Pontibacillus sp. HN14 was cultured with 20 mg L-1 BaP as the sole carbon source for 25 days and still had degradability of BaP at a 25% high salinity level. Moreover, 9,10-dihydrobenzo [a]pyrene-7(8H)-one, an intermediate metabolite, was detected during BaP degradation in the HN14 strain. Genome analysis identified a gene encoding the CYP102(HN14) enzyme. The results showed that the E. coli strain with CYP102(HN14) overexpression could transfer BaP to 9,10-dihydrobenzo [a]pyrene-7(8H)-one with a conversion rate of 43.5%, indicating that CYP102(HN14) played an essential role in BaP degradation in Pontibacillus sp. HN14. Thus, our results provide a novel BaP biodegradation molecule, which could be used in BaP bioremediation in high salinity conditions. This study is the first to show that CYP102(HN14) had the BaP oxidization ability in bacteria. CYP102(HN14) could be essential in removing PAHs in saline-alkali soil and other high salt environments through enzyme immobilization.
Collapse
Affiliation(s)
- Zhihui Qian
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, PR China.
| |
Collapse
|
8
|
Jiang W, Ren K, Yang Z, Fang Z, Li Y, Xiang X, Song Y. Purification, Identification and Molecular Docking of Immunomodulatory Peptides from the Heads of Litopenaeus vannamei. Foods 2022; 11:3309. [PMID: 37431056 PMCID: PMC9602407 DOI: 10.3390/foods11203309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
In order to realize the high-value utilization of Litopenaeus vannamei (L. vannamei) heads, immunomodulatory peptides were prepared from the enzymatic hydrolysate of L. vannamei heads, and the action mechanism of immunomodulatory peptides was determined by molecular docking. The results showed that six proteases were used to hydrolyze L. vannamei head proteins, with the animal protease hydrolysate exhibiting the highest macrophage relative proliferation rate (MRPR). The enzymatic products were then sequentially purified by ultrafiltration, Sephadex G-15 gel chromatography, identified by liquid chromatography-mass spectrometry (LC-MS/MS), and finally selected for six immunomodulatory peptides (PSPFPYFT, SAGFPEGF, GPQGPPGH, QGF, PGMR, and WQR). These peptides maintained good immune activity under heat treatment, pH treatment, and in vitro gastrointestinal digestion. Molecular docking analysis indicated that these peptides showed great binding to both toll-like receptor 2 and 4 (TLR2 and TLR4/MD-2), leading to immunomodulation. The discarded L. vannamei heads in this article are considered to be promising food-borne immunomodulators that contribute to enhancing the immune function of the body.
Collapse
Affiliation(s)
- Weiwei Jiang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Keyu Ren
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyan Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhou Fang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xi Xiang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yishan Song
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|