1
|
Zhang D, Zhang F, Zhang X, Cao Z, Song X, Zhang T, Yang Z. Metabolomics revealed the characteristics of the unique flavor substances of Alxa Allium mongolicum. Food Chem X 2024; 24:101979. [PMID: 39641113 PMCID: PMC11617693 DOI: 10.1016/j.fochx.2024.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Allium mongolicum is a wild vegetable with high nutritional value and is famous for its taste and aroma. This study used headspace solid-phase microextraction-mass spectrometry coupled with gas chromatography-mass spectrometry techniques to study the metabolic profile of A. mongolicum in different ecological environments. A total of 624 volatile organic compounds (VOCs) were identified. Ester compounds, heterocyclic compounds and terpenoids are the key metabolites that determine flavor differences. KEGG analysis showed that monoterpenoid biosynthesis, zein biosynthesis, α-linolenic acid metabolism and secondary metabolite biosynthesis were the most important metabolic pathways. Compared with Minqin A. mongolicum and Tengger A. mongolicum, Alxa A. mongolicum flavor substance notes sensory flavor has more green, fruity, sweet, floral, spicy, metallic, rose, almond, apple, grassy, tropical, citrus, fresh, herbal and other flavor combinations. Overall, this study reveals the main reason for the unique flavor of Alxa A. mongolicum through metabolomic evidence.
Collapse
Affiliation(s)
- Dong Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fenglan Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyan Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhenyu Cao
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoqing Song
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tong Zhang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhongren Yang
- College of Horticultural and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Wild Peculiar Vegetable Germplasm Resource and Germplasm Enhancement, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Han J, Liang J, Li Y, Wahia H, Phyllis O, Zhou C, Zhang L, Chen L, Qiao X, Ma H. Vacuum freeze drying combined with catalytic infrared drying to improve the aroma quality of chives: Potential mechanisms of their formation. Food Chem 2024; 461:140880. [PMID: 39182333 DOI: 10.1016/j.foodchem.2024.140880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
This study aimed to investigate the effect of vacuum freeze drying combined with catalytic infrared drying (FD-CIRD) process on aromas, free amino acids, reducing sugars and free fatty acids in chive leaves and stems. Gas chromatography-mass spectrometry combined with multivariate data analysis revealed that dipropyl disulfide was the key aroma that distinguished the differences between chive leaves and stems. The key aromas benzeneacetaldehyde, decanal and 1-octen-3-ol enhanced FD-CIRD chive leaves and stems aromas. The free amino acid content was highest at FD-CIRD stage in all samples except for the control (FD), while the reducing sugar content was lowest. The content of unsaturated fatty acids gradually decreased at FD stage and increased at FD-CIRD stage. Additionally, correlation analysis revealed that phenylalanine was a potential precursor of benzacetenealdehyde, oleic and linolenic acids were potential precursors of decanal and 1-octen-3-ol. Therefore, FD-CIRD technique helps to improve the sensory profile of dried chives.
Collapse
Affiliation(s)
- Jingyi Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Otu Phyllis
- Department of Science Laboratory Technology, Accra Technical University, P.O. Box GP 561, Barnes Road, Accra, Ghana
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuguang Qiao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Li F, Gu S, Zhao C, Zheng Y, Zhu J, Hu L, Hang Y. The detection and utilization of volatile metabolomics in Klebsiella pneumoniae by gas chromatography-ion mobility spectrometry. Sci Rep 2024; 14:26122. [PMID: 39478041 PMCID: PMC11525675 DOI: 10.1038/s41598-024-77746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
This research aimed to analyze the volatile compounds emitted during the proliferation of Klebsiella pneumoniae (K. pneumoniae) in the laboratory setting using gas chromatography-ion mobility spectrometry (GC-IMS) and to investigate the potential of volatile metabolomics for detecting carbapenemase-producing strains of K. pneumoniae. The volatile metabolomics of K. pneumoniae were comprehensively analyzed using GC-IMS in tryptic soy broth (TSB) as the culture medium. Afterward, the growth stabilization period (T2) served as the primary time point for analysis, with the introduction of imipenem and carbapenemase inhibitors (avibactam sodium or EDTA) during the exponential growth phase (T0) to further investigate alterations in volatile molecules associated with K. pneumoniae. Standard strains were utilized as references, while clinical strains were employed for validation purposes. At T2, a total of 22 volatile organic compounds (VOCs) associated with K. pneumoniae were identified (3 VOCs found in both monomer and dimer forms). Significant differences in VOCs were observed between carbapenemase-negative and carbapenemase-positive strains, both standard and clinical, following the introduction of imipenem. Furthermore, the addition of avibactam sodium led to distinct changes in the VOC content of strains producing class A carbapenemase, while the addition of EDTA resulted in specific alterations in the volatile metabolic profiles of strains producing class B carbapenemase. GC-IMS demonstrated significant promise for analyzing bacterial volatile metabolomics, and its application in evaluating the volatolomics of K. pneumoniae may facilitate the timely detection of carbapenemase-producing strains.
Collapse
Affiliation(s)
- Fuxing Li
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shumin Gu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chuwen Zhao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yunwei Zheng
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Junqi Zhu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Longhua Hu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Yaping Hang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Mingde Road No.1, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
4
|
Liu W, Gao H, He J, Yu A, Sun C, Xie Y, Yao H, Wang H, Duan Y, Hu J, Tang D, Ran T, Lei Z. Effects of dietary Allium mongolicum Regel powder supplementation on the growth performance, meat quality, antioxidant capacity and muscle fibre characteristics of fattening Angus calves under heat stress conditions. Food Chem 2024; 453:139539. [PMID: 38788638 DOI: 10.1016/j.foodchem.2024.139539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The aim of this study was to investigate the effects of dietary Allium mongolicum Regel powder (AMRP) supplementation on the growth performance, meat quality, antioxidant capacity and muscle fibre characteristics of fattening Angus calves. Growth performance data and longissimus thoracis (LT) samples were collected from four groups of fattening Angus, which were fed either a basal diet (CON) or a basal diet supplemented with an AMRP dose of 10 (LAMR), 15 (MAMR), or 20 g/animal/day AMRP (HAMR) for 120 days before slaughter. AMRP addition to the feed improved growth performance and meat quality and altered muscle fibre type. Some responses to AMRP supplementation were dose dependent, whereas others were not. Together, the results of this study demonstrated that dietary supplementation with 10 g/animal/day AMRP was the optimal dose in terms of fattening calf growth performance, while 20 g/animal/day AMRP supplementation was the optimal dose in terms of meat quality.
Collapse
Affiliation(s)
- Wangjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Huixia Gao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Jianjian He
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Aihuan Yu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Chenxu Sun
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Yaodi Xie
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Haibo Yao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - He Wang
- Tianjin Halo Biotechnology Co., Ltd., No. 18 Gui Yuan Road, Huan Yuan Hi Tech-Industrial Area, Tianjin, 300384, People's Republic of China
| | - Yueyan Duan
- Tianjin Halo Biotechnology Co., Ltd., No. 18 Gui Yuan Road, Huan Yuan Hi Tech-Industrial Area, Tianjin, 300384, People's Republic of China
| | - Jinsheng Hu
- Tianjin Halo Biotechnology Co., Ltd., No. 18 Gui Yuan Road, Huan Yuan Hi Tech-Industrial Area, Tianjin, 300384, People's Republic of China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Tao Ran
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730070, People's Republic of China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China.
| |
Collapse
|
5
|
Liu W, Yu A, Xie Y, Yao H, Sun C, Gao H, He J, Ao C, Tang D. Drying enhances the antioxidant activity of Allium mongolicum Regel through the phenylpropane and AA-MA pathway as shown by metabolomics. Food Chem X 2024; 22:101436. [PMID: 38742170 PMCID: PMC11089305 DOI: 10.1016/j.fochx.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Fresh Allium mongolicum Regel (FA) and dried A. mongolicum Regel (DA) are significantly different in antioxidant activity. However, the relevant mechanisms have not yet been explored. We evaluated the antioxidant activities of two varieties of FA and DA and characterized their metabolites using targeted metabolomics. The effect of different metabolites on the antioxidant activity of A. mongolicum Regel was investigated by multivariate analysis. A total of 713 metabolites were detected in all samples. Pearson correlation analysis demonstrated that the key primary metabolites were directly and significantly correlated with the total phenolic content (TPC) and total flavonoid content (TFC), while the secondary metabolites were directly correlated with antioxidant activity. The higher antioxidant activity of DA may be mainly attributed to the higher TPC and TFC. This study revealed the potential mechanism by which drying enhances the antioxidant activity of A. mongolicum Regel.
Collapse
Affiliation(s)
- Wangjing Liu
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Aihuan Yu
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Yaodi Xie
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Haibo Yao
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Chenxu Sun
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Huixia Gao
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Jianjian He
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| | - Changjin Ao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, People's Republic of China
| | - Defu Tang
- College of Animal Science and Technology, Gansu Agricultural University, No.1 Yingmen Village Anning, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
6
|
Yang B, Huang J, Jin W, Sun S, Hu K, Li J. Effects of Drying Methods on the Physicochemical Aspects and Volatile Compounds of Lyophyllum decastes. Foods 2022; 11:3249. [PMID: 37430997 PMCID: PMC9601802 DOI: 10.3390/foods11203249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, fresh Lyophyllum decastes was dried using hot air drying (HAD), hot air combined with vacuum drying (HAVD), and vacuum freeze drying (VFD). Additionally, the quality and volatile compounds were analyzed. VFD achieved the best color retention, the highest rehydration capacity, and the slightest damaged tissue structure; however, it recorded the longest drying time and the highest energy consumption. HAD was the most energy-efficient of the three methods. Furthermore, the products with more hardness and elasticity were obtained by HAD and HAVD-this finding was convenient for transportation. In addition, GC-IMS demonstrated that the flavor components had significantly changed after drying. A total of 57 volatile flavor compounds was identified, and the aldehyde, alcohol, and ketone compounds were the primary ingredient of the L. decastes flavor component, whereby the relative content of the HAD sample was apparently higher than HAVD and VFD. Taken together, VFD was better at preserving the color and shape of fresh L. decastes, but HAD was more appropriate for drying L. decastes because of the lower energy consumption, and was more economical. Meanwhile, HAD could be used to produce a more intense aroma.
Collapse
Affiliation(s)
- Bin Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianhang Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wensong Jin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Kaihui Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Edible Fungal Research Institute (Gutian), Fujian Agriculture and Forestry University, Ningde 352200, China
| |
Collapse
|