1
|
Shen Z, Dai J, Yang X, Liu Y, Liu L, Huang Y, Wang L, Chen P, Chen X, Zhang C, Zhao J, Yang X, Wang Q. Comparison of sea buckthorn fruit oil nanoemulsions stabilized by protein-polysaccharide conjugates prepared using β-glucan from various sources. Food Chem 2024; 457:140098. [PMID: 38901345 DOI: 10.1016/j.foodchem.2024.140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
To understand the influence of β-glucans structure on the emulsifying properties of protein-polysaccharide conjugates, sodium caseinate (NaCas) was utilized to form glycosylation conjugates with varying degrees of glycosylation (10.68-17.50%) using three β-glucans from bacteria, yeast, and oats. This process induced alterations in the secondary structure of protein. The nanoemulsions prepared with the glycosylated conjugates exhibited superior stability compared to those formulated solely with NaCas, particularly under conditions of drastic pH fluctuations and extended storage periods. The nanoemulsion prepared with the NaCas-Salecan conjugate demonstrated exceptional stability at pH 4 and 6, or storage for 20 days. Additionally, it significantly attenuated the oxidation of unsaturated fatty acids and exhibited the lowest levels of aggregation, flocculation, and free fatty acid release rate during in vitro digestion. This study suggested the potential of the NaCas-Salecan conjugates in enhancing the stability of nanoemulsions and facilitating the colorectal-targeted delivery of sea buckthorn fruit oil.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xinyue Yang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Yao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Lei Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - YuKun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Chisong Zhang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 610500, PR China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., Chengdu, 610000, PR China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China.
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
2
|
Gheorghita RE, Lupaescu AV, Gâtlan AM, Dabija D, Lobiuc A, Iatcu OC, Buculei A, Andriesi A, Dabija A. Biopolymers-Based Macrogels with Applications in the Food Industry: Capsules with Berry Juice for Functional Food Products. Gels 2024; 10:71. [PMID: 38247793 PMCID: PMC10815192 DOI: 10.3390/gels10010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The present study focused on the development of gel-based capsules from sodium alginate and the fresh juice from different berries: chokeberry, sea buckthorn, and blueberry. Obtained through the extrusion method, the macrocapsules were added into yogurt, a well-known and consumed dairy product. In order to establish the changes that can occur for the food product, the samples were tested over 7 and 15 days of storage in refrigeration conditions. According to the results, the antioxidant activity increased during storage and gels can represent a good option for bioactive substances' encapsulation. Sensorial analysis performed indicated that consumers are open to consuming yogurt berry capsules and, according to the results observed in the scientific literature, they no longer rejected the product due to the bitterness and sourness of sea buckthorn or aronia. Sea buckthorn capsules were brighter (L*) than chokeberry and blueberry capsules due to carotene content and dark colors. Minimal diameter variations and small standard deviations (SD = 0.25/0.33) suggest that extrusion methods and the Caviar box are good for gel capsule development. Yogurt luminosity varied with capsules; control had the highest, followed by sea buckthorn yogurt. Samples with chokeberry and blueberry (dark) capsules had lower luminosity. Over 8 and 15 days, luminosity slightly decreased, while a* and b* (hue and saturation) increased. Post-storage, the sample with chokeberry capsules showed a light purple color, indicating color transfer from capsules, with increased antioxidant activity. Differences between the samples and control were less pronounced in the sample with sea buckthorn capsules. Values for color differences between yogurt samples during the storage period revealed the most significant difference during the first storage period (day 1-8), with blueberries showing the lowest difference, indicating the stability of the blueberry capsules' wall during storage.
Collapse
Affiliation(s)
- Roxana Elena Gheorghita
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
| | - Ancuta Veronica Lupaescu
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, Airport Street 1, 720134 Suceava, Romania
| | - Anca Mihaela Gâtlan
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 720229 Suceava, Romania; (A.B.); (A.D.)
- SC Natur Logistics SRL, 720043 Suceava, Romania
| | - Dadiana Dabija
- Faculty of Economics, Administration and Business, Stefan cel Mare University of Suceava, Univeristy Street 13, 720229 Suceava, Romania;
| | - Andrei Lobiuc
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
| | - Oana Camelia Iatcu
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 13 University Street, 720229 Suceava, Romania; (R.E.G.); (A.V.L.); (A.L.); (O.C.I.)
| | - Amelia Buculei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 720229 Suceava, Romania; (A.B.); (A.D.)
| | | | - Adriana Dabija
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, University Street 13, 720229 Suceava, Romania; (A.B.); (A.D.)
| |
Collapse
|