1
|
Li Y, Ma J, Cao Y, Yang D. Efficient removal of allicin from the stalk of Allium fistulosum for dietary fiber production. NPJ Sci Food 2024; 8:32. [PMID: 38877017 PMCID: PMC11178807 DOI: 10.1038/s41538-024-00275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
The stalk of Allium fistulosum contains dietary fibers with complicated monosaccharide composition and glycosidic bond linkages, which renders it a better dietary fiber supplement. However, the unfavorable odor, majorly contributed by allicin, limits its applications. Although many physical and chemical methods have been developed to remove allicin, there is currently no comparison between their efficiencies. Here, we comprehensively compare all these methods of eliminating allicin in the Allium stalk by starting with optimization of the allicin extraction method. Results indicate that incubation of the chopped Allium stalk with water for 20 min and extraction with 75% ethanol reached a maximal extraction yield. Different methods of allicin elimination are examined, and physical removal of allicin by blanching at 100 °C reaches a maximal clearance rate of 73.3%, rendering it the most efficient and effective method eliminating allicin from the stalk of Allium fistulosum for the preparation of a totally green dietary fiber.
Collapse
Affiliation(s)
- Ye Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing, 100083, China
| | - Jiayin Ma
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing, 100083, China
| | - Yubin Cao
- Jiangsu QingGu Foods Co., Ltd, Xingdong Economic Development Zone, Xinghua, 225700, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing, 100083, China.
| |
Collapse
|
2
|
Xing J, Xu H, Zhu M, Zhang Y, Bai M, Zhou X, Liu H, Wang Y. Gas Chromatography-Mass Spectrometry Metabolite Analysis Combined with Transcriptomics Reveals Genes Involved in Wax Biosynthesis in Allium fistulosum L. Int J Mol Sci 2024; 25:6106. [PMID: 38892292 PMCID: PMC11173144 DOI: 10.3390/ijms25116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Cuticular waxes are essential for protecting plants from various environmental stresses. Allium fistulosum serves as an excellent model for investigating the regulatory mechanisms underlying cuticular wax synthesis with notable epidermal wax characteristics. A combination of gas chromatography-mass spectrometry (GC-MS) metabolite analysis and transcriptomics was used to investigate variations in metabolites and gene expression patterns between the wild type (WT) and glossy mutant type (gl2) of A. fistulosum. The WT surface had a large number of acicular and lamellar waxy crystals, whereas the leaf surface of gl2 was essentially devoid of waxy crystals. And the results revealed a significant decrease in the content of 16-hentriacontanone, the principal component of cuticular wax, in the gl2 mutant. Transcriptomic analysis revealed 3084 differentially expressed genes (DEGs) between WT and gl2. Moreover, we identified 12 genes related to fatty acid or wax synthesis. Among these, 10 DEGs were associated with positive regulation of wax synthesis, whereas 2 genes exhibited negative regulatory functions. Furthermore, two of these genes were identified as key regulators through weighted gene co-expression network analysis. Notably, the promoter region of AfisC5G01838 (AfCER1-LIKE1) exhibited a 258-bp insertion upstream of the coding region in gl2 and decreased the transcription of the AfCER1-LIKE1 gene. This study provided insights into the molecular mechanisms governing cuticular wax synthesis in A. fistulosum, laying the foundation for future breeding strategies.
Collapse
Affiliation(s)
- Jiayi Xing
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Huanhuan Xu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingzhao Zhu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Yuchen Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Mifeng Bai
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Xuyang Zhou
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Yongqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), Beijing 100097, China; (J.X.); (H.X.); (M.Z.); (Y.Z.); (M.B.); (X.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| |
Collapse
|
3
|
Kim SH, Yoon JB, Han J, Seo YA, Kang BH, Lee J, Ochar K. Green Onion ( Allium fistulosum): An Aromatic Vegetable Crop Esteemed for Food, Nutritional and Therapeutic Significance. Foods 2023; 12:4503. [PMID: 38137307 PMCID: PMC10742967 DOI: 10.3390/foods12244503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, there has been a shift towards a greater demand for more nutritious and healthier foods, emphasizing the role of diets in human well-being. Edible Alliums, including common onions, garlic, chives and green onions, are staples in diverse cuisines worldwide and are valued specifically for their culinary versatility, distinct flavors and nutritional and medicinal properties. Green onions are widely cultivated and traded as a spicy vegetable. The mild, onion-like flavor makes the crop a pleasant addition to various dishes, serving as a staple ingredient in many world cuisines, particularly in Eastern Asian countries such as China, Japan and the Republic of Korea. The green pseudostems, leaves and non-developed bulbs of green onions are utilized in salads, stir-fries, garnishes and a myriad of culinary preparations. Additionally, green onions have a rich historical background in traditional medicine and diets, capturing the attention of chefs and the general public. The status of the crop as an important food, its culinary diversity and its nutraceutical and therapeutic value make it a subject of great interest in research. Therefore, the present review has examined the distribution, culinary, nutritional and therapeutic significance of green onions, highlighting the health benefits derived from the consumption of diets with this aromatic vegetable crop as a constituent.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
| | - Jung Beom Yoon
- National Institute of Horticultural and Herbal Science, RDA, Wanju 55365, Republic of Korea;
| | - Jiwon Han
- National Institute of Horticultural and Herbal Science, RDA, Muan 58545, Republic of Korea;
| | - Yum Am Seo
- Department of Data Science, Jeju National University, Jeju 63243, Republic of Korea;
| | - Byeong-Hee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jaesu Lee
- Korea Partnership for Innovation of Agriculture, RDA, Jeonju 54875, Republic of Korea;
| | - Kingsley Ochar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA, Jeonju 5487, Republic of Korea
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana
| |
Collapse
|
4
|
Anaya-Esparza LM, Aurora-Vigo EF, Villagrán Z, Rodríguez-Lafitte E, Ruvalcaba-Gómez JM, Solano-Cornejo MÁ, Zamora-Gasga VM, Montalvo-González E, Gómez-Rodríguez H, Aceves-Aldrete CE, González-Silva N. Design of Experiments for Optimizing Ultrasound-Assisted Extraction of Bioactive Compounds from Plant-Based Sources. Molecules 2023; 28:7752. [PMID: 38067479 PMCID: PMC10707804 DOI: 10.3390/molecules28237752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Plant-based materials are an important source of bioactive compounds (BC) with interesting industrial applications. Therefore, adequate experimental strategies for maximizing their recovery yield are required. Among all procedures for extracting BC (maceration, Soxhlet, hydro-distillation, pulsed-electric field, enzyme, microwave, high hydrostatic pressure, and supercritical fluids), the ultrasound-assisted extraction (UAE) highlighted as an advanced, cost-efficient, eco-friendly, and sustainable alternative for recovering BC (polyphenols, flavonoids, anthocyanins, and carotenoids) from plant sources with higher yields. However, the UAE efficiency is influenced by several factors, including operational variables and extraction process (frequency, amplitude, ultrasonic power, pulse cycle, type of solvent, extraction time, solvent-to-solid ratio, pH, particle size, and temperature) that exert an impact on the molecular structures of targeted molecules, leading to variations in their biological properties. In this context, a diverse design of experiments (DOEs), including full or fractional factorial, Plackett-Burman, Box-Behnken, Central composite, Taguchi, Mixture, D-optimal, and Doehlert have been investigated alone and in combination to optimize the UAE of BC from plant-based materials, using the response surface methodology and mathematical models in a simple or multi-factorial/multi-response approach. The present review summarizes the advantages and limitations of the most common DOEs investigated to optimize the UAE of bioactive compounds from plant-based materials.
Collapse
Affiliation(s)
- Luis Miguel Anaya-Esparza
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Edward F. Aurora-Vigo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Zuamí Villagrán
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Ernesto Rodríguez-Lafitte
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - José Martín Ruvalcaba-Gómez
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Mexico;
| | - Miguel Ángel Solano-Cornejo
- Escuela de Ingeniería Agroindustrial y Comercio Exterior, Universidad Señor de Sipán, Chiclayo 14000, Peru; (E.R.-L.); (M.Á.S.-C.)
| | - Victor Manuel Zamora-Gasga
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Efigenia Montalvo-González
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Tepic 63175, Mexico; (V.M.Z.-G.); (E.M.-G.)
| | - Horacio Gómez-Rodríguez
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - César Eduardo Aceves-Aldrete
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| | - Napoleón González-Silva
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico; (Z.V.); (H.G.-R.); (C.E.A.-A.); (N.G.-S.)
| |
Collapse
|
5
|
Quintero Pimiento CR, Fernández PV, Ciancia M, López-Córdoba A, Goyanes S, Bertuzzi MA, Foresti ML. Antioxidant Edible Films Based on Pear Juice and Pregelatinized Cassava Starch: Effect of the Carbohydrate Profile at Different Degrees of Pear Ripeness. Polymers (Basel) 2023; 15:4263. [PMID: 37959942 PMCID: PMC10649233 DOI: 10.3390/polym15214263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Edible films based on fruit and vegetable purees combined with different food-grade biopolymeric binding agents (e.g., pectin, gelatin, starch, sodium alginate) are recognized as interesting packaging materials that benefit from the physical, mechanical, and barrier properties of biopolymers as well as the sensory and nutritional properties of purees. In the current contribution, edible antioxidant films based on pear juice and pregelatinized cassava starch were developed. In particular, the suitability of using pregelatinized cassava starch for the non-thermal production of these novel edible films was evaluated. In addition, the effects on the films' properties derived from the use of pear juice instead of the complete puree, from the content of juice used, and from the carbohydrate composition associated with the ripening of pears were all studied. The produced films were characterized in terms of their total polyphenol content, water sensitivity, and water barrier, optical, mechanical and antioxidant properties. Results showed that the use of pear juice leads to films with enhanced transparency compared with puree-based films, and that juice concentration and carbohydrate composition associated with the degree of fruit ripeness strongly govern the films' properties. Furthermore, the addition of pregelatinized cassava starch at room temperature discloses a significant and favorable impact on the cohesiveness, lightness, water resistance, and adhesiveness of the pear-juice-based films, which is mainly attributed to the effective interactions established between the starch macromolecules and the juice components.
Collapse
Affiliation(s)
- Carmen Rosa Quintero Pimiento
- Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires 1127, Argentina;
- CONICET–Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires 1127, Argentina
| | - Paula Virginia Fernández
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Cátedra de Química de Biomoléculas, Buenos Aires 1127, Argentina; (P.V.F.); (M.C.)
- CONICET, Centro de Investigación de Hidrato de Carbono (CIHIDECAR)-CONICET, UBA, Buenos Aires 1428, Argentina
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Cátedra de Química de Biomoléculas, Buenos Aires 1127, Argentina; (P.V.F.); (M.C.)
- CONICET, Centro de Investigación de Hidrato de Carbono (CIHIDECAR)-CONICET, UBA, Buenos Aires 1428, Argentina
| | - Alex López-Córdoba
- Grupo de Investigación en Bioeconomía y Sostenibilidad Agroalimentaria, Escuela de Administración de Empresas Agropecuarias, Facultad Seccional Duitama, Universidad Pedagógica y Tecnológica de Colombia, Duitama 150461, Colombia;
| | - Silvia Goyanes
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires 1127, Argentina;
- CONICET–Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires 1127, Argentina
| | - María Alejandra Bertuzzi
- Universidad Nacional de Salta, Facultad de Ingeniería, Instituto de Investigaciones para la Industria Química (INIQUI) CONICET, Salta 4400, Argentina;
| | - María Laura Foresti
- Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires 1127, Argentina;
- CONICET–Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires 1127, Argentina
| |
Collapse
|
6
|
Aquino G, Basilicata MG, Crescenzi C, Vestuto V, Salviati E, Cerrato M, Ciaglia T, Sansone F, Pepe G, Campiglia P. Optimization of microwave-assisted extraction of antioxidant compounds from spring onion leaves using Box-Behnken design. Sci Rep 2023; 13:14923. [PMID: 37691048 PMCID: PMC10493223 DOI: 10.1038/s41598-023-42303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
Many studies have explored the extraction of bioactive compounds from different onion solid wastes, such as bulb, skin, and peel. However, onion leaves have received limited attention despite their potential as a valuable source of nutraceutical compounds. This study aimed to valorise, for the first time, the agricultural waste in the form of spring onion leaves (CN, Cipollotto Nocerino) to obtain antioxidant-rich polyphenolic extracts. A Box-Behnken design (BBD) was used to assess the impact of microwave-assisted extraction (MAE) variables (temperature, time, extraction volume, and ethanol concentration) on total polyphenol content (TPC) measured by Folin-Ciocalteu method and the antioxidant power determined by FRAP assay. Response surface methodology (RSM) was applied, and regression equations, analysis of variance, and 3D response curves were developed. Our results highlighted that the TPC values range from 0.76 to 1.43 mg GAE g-1 dw, while the FRAP values range from 8.25 to 14.80 mmol Fe(II)E g-1 dw. The optimal extraction conditions predicted by the model were 60 °C, 22 min, ethanol concentration 51% (v/v), and solvent volume 11 mL. These conditions resulted in TPC and FRAP values of 1.35 mg GAE g-1 dw and 14.02 mmol Fe(II)E g-1 dw, respectively. Furthermore, the extract obtained under optimized conditions was characterized by UHPLC-ESI-Orbitrap-MS analysis. LC/MS-MS platform allowed us to tentatively identify various compounds belonging to the class of flavonoids, saponins, fatty acids, and lipids. Finally, the ability of CN optimal extract to inhibit the intracellular reactive oxygen species (ROS) release in a hepatocarcinoma cell line using an H2O2-induced oxidative stress model, was evaluated. The results highlighted the potential of CN extract as a valuable source of polyphenols with significant antioxidant properties, suitable for various applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Giovanna Aquino
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | | | - Carlo Crescenzi
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Michele Cerrato
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Francesca Sansone
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| |
Collapse
|
7
|
Xie T, Wu Q, Lu H, Hu Z, Luo Y, Chu Z, Luo F. Functional Perspective of Leeks: Active Components, Health Benefits and Action Mechanisms. Foods 2023; 12:3225. [PMID: 37685158 PMCID: PMC10486880 DOI: 10.3390/foods12173225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Leek (Allium fistulosum L.), a common and widely used food ingredient, is a traditional medicine used in Asia to treat a variety of diseases. Leeks contain a variety of bioactive substances, including sulfur compounds, dietary fiber, steroid compounds and flavonoid compounds. Many studies have shown that these active ingredients produce the following effects: promotion of blood circulation, lowering of cholesterol, relief of fatigue, anti-inflammation, anti-bacteria, regulation of cell metabolism, anti-cancer, anti-oxidation, and the lowering of fat and blood sugar levels. In this paper, the main bioactive components and biological functions of leeks were systemically reviewed, and the action mechanisms of bioactive components were discussed. As a common food, the health benefits of leeks are not well known, and there is no systematic summary of leek investigations. In light of this, it is valuable to review the recent progress and provide reference to investigators in the field, which will promote future applications and investigations of leeks.
Collapse
Affiliation(s)
- Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Zhongxing Chu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (T.X.); (Q.W.); (H.L.); (Z.H.); (Z.C.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
8
|
Shekhar S, Prakash P, Singha P, Prasad K, Singh SK. Modeling and Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Allium sativum Leaves Using Response Surface Methodology and Artificial Neural Network Coupled with Genetic Algorithm. Foods 2023; 12:foods12091925. [PMID: 37174462 PMCID: PMC10178505 DOI: 10.3390/foods12091925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
This study explains the effect of ultrasound on the extraction of the bioactive compounds from garlic (Allium sativum L.) leaf powder. The experiment was carried out by varying the ultrasound amplitude (30-60%), treatment time (5-15 min), and ethanol concentration (40-60%) required to obtain the maximum extraction yield of total phenol content (TPC), total flavonoid content (TFC), and antioxidant activity. Rotatable central composite design (RCCD) provided experimental parameter combinations in the ultrasound-assisted extraction (UAE) of garlic leaf powder. The values of extraction yield, TPC, TFC, and antioxidant activity for the optimized condition of RSM were obtained at 53% amplitude, 13 min of treatment time, and 50% ethanol concentration. The values of the target compounds predicted at this optimized condition from RSM were 32.2% extraction yield, 9.9 mg GAE/g TPC, 6.8 mg QE/g TFC, and 58% antioxidant activity. The ANN-GA optimized condition for the leaf extracts was obtained at 60% amplitude, 13 min treatment time, and 53% ethanol concentration. The predicted values of optimized condition obtained by ANN-GA were recorded as 32.1738% extraction yield and 9.8661 mg GAE/g, 6.8398 mg QE/g, and 58.5527% for TPC, TFC, and antioxidant activity, respectively. The matured leaves of garlic, if not harvested during its cultivation, often go waste despite being rich in antioxidants and phenolic compounds. With the increased demand for the production of value-added products, the extraction of the bioactive compounds from garlic leaves can resolve waste management and potential health issues without affecting the crop yield through the process for high-end use in value addition.
Collapse
Affiliation(s)
- Shubhra Shekhar
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Prem Prakash
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Kamlesh Prasad
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
9
|
Razola-Díaz MDC, Aznar-Ramos MJ, Guerra-Hernández EJ, García-Villanova B, Gómez-Caravaca AM, Verardo V. Establishment of a Sonotrode Ultrasound-Assisted Extraction of Phenolic Compounds from Apple Pomace. Foods 2022; 11:3809. [PMID: 36496617 PMCID: PMC9740410 DOI: 10.3390/foods11233809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Apple pomace is the main by-product from apple processing in the juice industry and is considered a source of polyphenols with several health bioactivities. Thus, this research focuses on the establishment of the ultrasound-assisted extraction of total phenolic compounds, focusing on phloretin and phloridzin, with high antioxidant activity from apple pomace, using a sonotrode. We used a Box-Behnken design of 15 experiments with 3 independent factors (ethanol (%), time (min) and amplitude (%)). The responses evaluated were the sum of phenolic compounds, phloretin and phloridzin measured by HPLC-MS-ESI-TOF, and antioxidant activity measured by DPPH, ABTS and FRAP. The validity of the model was confirmed by ANOVA. Further, it was carried out using a comparison between different apple pomaces with or without seeds extracted by the optimal conditions. Phloretin and phloridzin accounted for 7 to 32% of the total phenolic compounds in the apple pomaces. Among all the apple pomace analyzed, that of the variety Gala had the highest phenolic content and antioxidant activity. The presence of the cyanogenic compound amygdalin was detected in apple pomaces that contained seeds accompanied with a higher content of phloretin and phloridzin but a lower content of flavan-3-ols.
Collapse
Affiliation(s)
- María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Spain
| | - María José Aznar-Ramos
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Spain
| | - Eduardo Jesús Guerra-Hernández
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Spain
| | - Belén García-Villanova
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Spain
| | - Ana María Gómez-Caravaca
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Spain
- Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, 18071 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18011 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Mataix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn., 18100 Armilla, Spain
| |
Collapse
|