1
|
Ma Q, Wang X, Appels R, Zhang D, Zhang X, Zou L, Hu X. Large flour aggregates containing ordered B + V starch crystals significantly improved the digestion resistance of starch in pretreated multigrain flour. Int J Biol Macromol 2024; 264:130719. [PMID: 38460625 DOI: 10.1016/j.ijbiomac.2024.130719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The starch digestibility of flour is influenced by both physicochemical treatment and flour particle size, but the interactive effect of these two factors is still unclear. In this study, the effect of pullulanase debranching, combined with heat-moisture treatment (P-HMT), on starch digestibility of multi-grain flours (including oat, buckwheat and wheat) differing in particle size was investigated. The results showed that the larger-size flour always resulted in a higher resistant starch (RS) content either in natural or treated multi-grain flour (NMF or PHF). P-HMT doubled the RS content in NMFs and the large-size PHF yielded the highest RS content (78.43 %). In NMFs, the cell wall integrity and flour particle size were positively related to starch anti-digestibility. P-HMT caused the destruction of cell walls and starch granules, as well as the formation of rigid flour aggregates with B + V starch crystallite. The largest flour aggregates with the most ordered B + V starch were found in large-size PHF, which contributed to its highest RS yield, while the medium- and small-size PHFs with smaller aggregates were sensitive to P-HMT, resulting in the lower ordered starch but stronger interactions between starch and free lipid or monomeric proteins, eventually leading to their lower RS but higher SDS yield.
Collapse
Affiliation(s)
- Qianying Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China.
| | - Rudi Appels
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Di Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Xinyu Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, No. 620 West Chang'an Avenue, Chang'an District, Xi'an 710119, China
| |
Collapse
|
2
|
Chen K, Wei P, Jia M, Wang L, Li Z, Zhang Z, Liu Y, Shi L. Research Progress in Modifications, Bioactivities, and Applications of Medicine and Food Homologous Plant Starch. Foods 2024; 13:558. [PMID: 38397535 PMCID: PMC10888398 DOI: 10.3390/foods13040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Starchy foods are an essential part of people's daily diet. Starch is the primary substance used by plants to store carbohydrates, and it is the primary source of energy for humans and animals. In China, a variety of plants, including edible medicinal plants, such as Pueraria root, yam tuber and coix seed, are rich in starch. However, limited by their inherent properties, kudzu starch and other starches are not suitable for the modern food industry. Natural starch is frequently altered by physical, chemical, or biological means to give it superior qualities to natural starch as it frequently cannot satisfy the demands of industrial manufacturing. Therefore, the deep processing market of modified starch and its products has a great potential. This paper reviews the modification methods which can provide excellent functional, rheological, and processing characteristics for these starches that can be used to improve the physical and chemical properties, texture properties, and edible qualities. This will provide a comprehensive reference for the modification and application of starch from medicinal and edible plants.
Collapse
Affiliation(s)
- Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (K.C.); (P.W.)
| | - Pinghui Wei
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China; (K.C.); (P.W.)
| | - Meiqi Jia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| | - Lihao Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| | - Zihan Li
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.L.); (Z.Z.)
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (M.J.); (L.W.)
| |
Collapse
|
3
|
Shah A, Wang Y, Tao H, Zhang W, Cao S. Insights into the structural characteristics and in vitro starch digestibility on parboiled rice as affected by ultrasound treatment in soaking process. Food Chem X 2023; 19:100816. [PMID: 37780351 PMCID: PMC10534151 DOI: 10.1016/j.fochx.2023.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 10/03/2023] Open
Abstract
This study investigated ultrasound treatment as a protective parboiling technology for producing low GI rice. Indica and Japonica rice with different amylose contents were subjected to different ultrasound times (15 min, 30 min, and 60 min) and amplitudes (30, 60, and 100%) under soaking conditions for parboiling applications. Starch granules merged and lost their shape when ultrasound treatment time and amplitudes were increased up to 15 min and 30%, respectively. It increased the crystallinity, gelatinization temperatures and decreased pasting viscosity, promoting more resistant starch. The predicted glycemic index (GI) was reduced from 62.9 and 57.6 to 51.3 and 47.1 for Japonica and Indica, respectively. These results suggested that ultrasound soaking is a promising physical method to produce parboiled rice with a lower GI by promoting the formation of amylose chains and decreasing enzyme penetration efficiency.
Collapse
Affiliation(s)
- Alia Shah
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yunchun Wang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Han Tao
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuqing Cao
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
4
|
Tukassar A, Shukat R, Iahtisham‐Ul‐Haq, Butt MS, Nayik GA, Ramniwas S, Al Obaid S, Ali Alharbi S, Ansari MJ, Konstantinos Karabagias I, Sarwar N. Compositional profiling and sensory analysis of cauliflower by-products-enriched muffins. Food Sci Nutr 2023; 11:6020-6031. [PMID: 37831734 PMCID: PMC10563684 DOI: 10.1002/fsn3.3536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 10/15/2023] Open
Abstract
Cauliflower (Brassica oleracea var. botrytis) by-products (leaves, stems, stalks) (CBP) were successfully utilized in muffins as a model system and their feasibility of incorporation was investigated. CBP powder-based muffin formulations were made by the progressive replacement of wheat flour (WF) with 10%, 20%, and 30% of CBP. The physicochemical, pasting properties, antioxidant potential, textural characteristics, and sensorial attributes were analyzed. Substitution of CBP significantly (p < .05) resulted in an upsurge in crude protein, crude fiber, minerals, total phenolics, and total flavonoid contents, as well as total antioxidant activity values of muffins. The pasting properties were influenced by monitoring an increase in peak, breakdown, final, and setback viscosities. Although the addition of an increasing amount of CBP improved the nutritional characteristics, however, the increased level of replacement (>10%) had significant adverse effects on baking and physical characteristics. The specific loaf volume of the developed muffins decreased the crumb color which became darker, and enriched muffins were hardened in texture. Furthermore, sensory evaluation confirmed the positive effects of CBP incorporation only up to 10%. Overall, present results highlighted that supplementation of wheat muffins with 10% CBP is a beneficial approach to enrich them with nutrients and intensify their antioxidant potential.
Collapse
Affiliation(s)
- Ammara Tukassar
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Rizwan Shukat
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Iahtisham‐Ul‐Haq
- Kauser Abdulla Malik School of Life SciencesForman Christian College (A Chartered University)LahorePakistan
| | - Masood Sadiq Butt
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Gulzar Ahmad Nayik
- Department of Food Science & TechnologyGovernment Degree CollegeShopianJammu and KashmirIndia
| | - Seema Ramniwas
- University Centre for Research and DevelopmentChandigarh University, GharuanMohaliPunjabIndia
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Mohammad Javed Ansari
- Department of BotanyHindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly)MoradabadUttar‐PradeshIndia
| | | | - Nazmul Sarwar
- Department of Food Processing and EngineeringChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| |
Collapse
|