1
|
Shui S, Chen Y, Yan H, Song J, Liu S, Benjakul S, Zhang B. Comparative analyses of physicochemical and volatile flavor characteristics in hooked, trawl-net, and radar-net hairtail ( Trichiurus haumela) muscles during long-term cryopreservation at -18°C. Food Sci Nutr 2024; 12:8159-8170. [PMID: 39479670 PMCID: PMC11521657 DOI: 10.1002/fsn3.4381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 11/02/2024] Open
Abstract
Chemical analysis showed that pH, b* values, myosin turbidity, carbonyl content, and surface hydrophobicity elevated in hooked, trawl-net, and radar-net hairtail (Trichiurus haumela, HH, TH, and RH) muscles with the prolonged cryopreservation time (-18℃, 120 d). In contrast, L*, a* values, textural properties, and myosin solubility existed decreasing trends. Microstructural results showed that freezing resulted in disordered myofibrils, decreased collagen fibers, widened myofibrillar space, and increased fragmentation in hairtail muscles. Furthermore, volatile flavor analysis suggested that aldehydes, ketones, alcohols, and amines were the key factors for the overall flavor formation in hairtails during cold storage. Pearson correlation coefficient analysis revealed that the color, texture, and protein oxidation had close correlations with VOCs. Among the three different kinds of hairtail, fresh RH fillets exhibited an attractive aroma with high economic value, long-term frozen TH muscle tissues were prone to deterioration in texture, microstructure, and flavor, and the HH samples presented stable quality characteristics and storage performance.
Collapse
Affiliation(s)
- Shanshan Shui
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Yu Chen
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Hongbo Yan
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
- Pisa Marine Graduate SchoolZhejiang Ocean UniversityZhoushanChina
| | - Jia Song
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
| | - Shucheng Liu
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro‐IndustryPrince of Songkla UniversityHat YaiThailand
| | - Bin Zhang
- College of Food Science and PharmacyZhejiang Ocean UniversityZhoushanChina
- Pisa Marine Graduate SchoolZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
2
|
Dong R, Wu Y, Du Q, Lu R, Benjakul S, Zhang B, Shui S. Changes in the physicochemical characteristics and microbial community compositions of the abdomen and cheliped muscles in swimming crab ( Portunus trituberculatus) during frozen storage. Food Chem X 2024; 21:101210. [PMID: 38379803 PMCID: PMC10877172 DOI: 10.1016/j.fochx.2024.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The physicochemical indexes and microbial diversity were investigated to compare the altered quality properties of the abdomen and cheliped muscle in swimming crab (Portunus trituberculatus) during 100 days of frozen storage at -20℃. Over the extended duration of frozen storage, the sensory evaluation, moisture content, water activity (Aw), and water-holding capacity (WHC) in the abdomen and cheliped muscles of swimming crab decreased, while the pH, total volatile basic nitrogen (TVB-N), and trimethylamine (TMA) increased. The increase and decrease rates of these indicators were smaller in the abdomen than those in the cheliped muscle. High-throughput sequencing results indicated a reduction in the microbial richness and diversity in the abdomen and cheliped muscles of the swimming crab as frozen storage time extended. Proteobacteria, Actinobacteriota, and Firmicutes, Achromobacter, Kocuria, and Staphylococcus were the dominant phylum and genus in both muscle tissues, respectively. Furthermore, the correlation analysis between the composition of the microbiota and physiochemical properties revealed that the growths of Kocuria, Vibrio, Staphylococcus, and Aliiroseovarius were closely related to the physiochemical factors. The study provides a theoretical reference for quality deterioration and develops new products of different parts in the swimming crab during frozen storage.
Collapse
Affiliation(s)
- Ruyi Dong
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Qi Du
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Rui Lu
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense, Spain
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| | - Shanshan Shui
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, PR China
| |
Collapse
|
3
|
Shambhavi S, Kim H, Jahanzaib M, Lee J, Park D. BT100, a three-in-one, multipurpose disinfecting, deodorizing, and air-cleaning solution with an effective, gradual, and continuous gaseous chlorine dioxide-releasing substance. Heliyon 2024; 10:e26738. [PMID: 38449591 PMCID: PMC10915389 DOI: 10.1016/j.heliyon.2024.e26738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Aerosols carrying viruses that are released from the oral cavity of infected individuals are the primary, if not the only, means of transmission during viral respiratory disease epidemics. This makes crowded rooms and tiny, enclosed public areas like bathrooms prime environments for the transmission of diseases. Volatile organic compounds (VOCs) and formaldehyde are two contaminants that pose serious threats to human health and well-being in indoor environments. The varied disinfectant properties of chlorine dioxide (ClO2) make it a key player in treating a range of air quality issues. To balance effectiveness and safety, however, the careful application of chlorine dioxide is essential to achieving the best results in air quality while preserving human health and well-being. This study explores the many functions of chlorine dioxide, including the prevention of the spread of viruses, the elimination of harmful gases like ammonia and hydrogen sulfide, and its effects on formaldehyde and total volatile organic compounds (TVOCs) in indoor environments using BT100. The results indicate a reduction of 98.5%, 81.01%, 62.22%, 46.5%, and 63.84% in minimizing aerosolized viruses, ammonia, and hydrogen sulfide gas in addition to formaldehyde and total volatile organic compounds.
Collapse
Affiliation(s)
- Sharma Shambhavi
- Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang-si, 16105, Republic of Korea
- Transportation System Engineering, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Honggil Kim
- Sejin E & P Co. Ltd., Anyang-Si, Gyeonggi-do, Republic of Korea
| | - Muhammad Jahanzaib
- Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang-si, 16105, Republic of Korea
- Transportation System Engineering, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jooyeon Lee
- Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang-si, 16105, Republic of Korea
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Duckshin Park
- Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang-si, 16105, Republic of Korea
- Transportation System Engineering, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
4
|
Shui S, Wu Y, Chen X, Li R, Yang H, Lu B, Zhang B. Spectrophotometric- and LC/MS-Based Lipidomics Analyses Revealed Changes in Lipid Profiles of Pike Eel ( Muraenesox cinereus) Treated with Stable Chlorine Dioxides and Vacuum-Packed during Chilled Storage. Foods 2023; 12:2791. [PMID: 37509883 PMCID: PMC10379090 DOI: 10.3390/foods12142791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Spectrophotometric- and liquid chromatography/mass spectrometry (LC/MS)-based lipidomics analyses were performed to explore the changes of lipid profiles in pike eel (Muraenesox cinereus) under stable chlorine dioxides (ClO2) and vacuum-packed treatment during chilled storage. The peroxide value (PV) and malondialdehyde (MDA) content in ClO2 treated and vacuum-packaged (VP) samples were significantly reduced compared to simple-packaged (SP) samples during whole chilled storage. The LC/MS-based lipidomics analyses identified 2182 lipid species in the pike eel muscle classified into 39 subclasses, including 712 triglycerides (TGs), 310 phosphatidylcholines (PCs), 153 phosphatidylethanolamines (PEs), and 147 diglycerides (DGs), among others. Further, in comparison with fresh pike eel (FE) muscle, 354 and 164 higher and 420 and 193 lower abundant levels of differentially abundant lipids (DALs) were identified in SP samples and VP samples, respectively. Compared with the VP batch, 396 higher and 404 lower abundant levels of DALs were identified in the SP batch. Among these, PCs, PEs, TGs, and DGs were more easily oxidized/hydrolyzed, which could be used as biomarkers to distinguish FE, SP, and VP samples. This research provides a reference for controlling lipid oxidation in fatty fish.
Collapse
Affiliation(s)
- Shanshan Shui
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Zhejiang Marine Development Research Institute, Zhoushan 316022, China
| | - Yingru Wu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaonan Chen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ruixue Li
- Comprehensive Technical Service Center of Zhoushan Customs, Zhoushan 316000, China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan 316022, China
| | - Baiyi Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|