1
|
Wu Z, Liao W, Zhao H, Qiu Z, Zheng P, Liu Y, Lin X, Yao J, Li A, Tan X, Sun B, Meng H, Liu S. Differences in the Quality Components of Wuyi Rock Tea and Huizhou Rock Tea. Foods 2024; 14:4. [PMID: 39796294 PMCID: PMC11720515 DOI: 10.3390/foods14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Different origins and qualities can lead to differences in the taste and aroma of tea; however, the impacts of origin and quality on the taste and aroma characteristics of Wuyi rock tea and Huizhou rock tea have rarely been studied. In this study, high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and sensory evaluation methods were used to compare the quality components of Wuyi rock tea and Huizhou rock tea. The sensory evaluation showed that they each have their own characteristics, but the overall acceptability of Wuyi rock tea is ahead of Huizhou rock tea (p < 0.01). Biochemical experiments showed that HT was the highest in water leachables, about 43.12%; WT was the highest in tea polyphenols, about 14.91%; WR was the highest in free amino acids, about 3.38%; and the six rock teas had different health benefits. High-performance liquid chromatography showed that the theanine contents of WS and WR were 0.183% and 0.103%, respectively, which were much higher than those of other varieties. The OPLS-DA model predicted the factors that caused their different tastes, in order of contribution: CG > ECG > caffeine > EGCG > theanine. Ten volatile substances with OAV ≥ 1 and VIP > 1 were also found, indicating that they contributed greatly to the aroma characteristics, especially hexanoic acid, hexyl ester, and benzyl nitrile. The results of the correlation analysis showed that theanine was significantly correlated with taste (p < 0.05), and hexanoic acid, hexyl ester, and benzyl nitrile were significantly correlated with smell (p < 0.05). Substances such as theanine, hexanoic acid, hexyl ester, and benzyl nitrile give them their unique characteristics. Analysis of the differences in the quality components of the six rock teas can provide reference value for the cultivation and processing of rock teas.
Collapse
Affiliation(s)
- Zhaobao Wu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Weiwen Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuxuan Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinyuan Lin
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiyuan Yao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xindong Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hui Meng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Huda H, Majid NBA, Chen Y, Adnan M, Ashraf SA, Roszko M, Bryła M, Kieliszek M, Sasidharan S. Exploring the ancient roots and modern global brews of tea and herbal beverages: A comprehensive review of origins, types, health benefits, market dynamics, and future trends. Food Sci Nutr 2024; 12:6938-6955. [PMID: 39479640 PMCID: PMC11521711 DOI: 10.1002/fsn3.4346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 11/02/2024] Open
Abstract
Tea, a culturally significant beverage, originated around 2700 B.C. in ancient Chinese civilization, with a profound understanding of its therapeutic properties. Herbal medicines from diverse plant sources have been esteemed for their phytochemical content. Today, tea's appeal spans the globe, with various processing techniques creating distinct tea varieties. This review article comprehensively explores tea and herbal teas, encompassing their origins, types, trade history, health benefits, chemical composition, and market and future dynamics. This review examines tea's evolution from ancient China to its global significance and analyzes the impact of tea trade routes on cultural exchanges and trade dynamics. The review covers conventional teas (black, green, and oolong), blended teas, and herbal teas. It primarily focuses on herbal beverages' chemical composition and active components derived from diverse plants and botanicals, highlighting their traditional uses and health-promoting applications. The review provides valuable insights into the dynamic herbal tea market, growth, consumer preferences, industry trends, and future aspects of the herbal beverage. Additionally, it explores the proper classification and preparation of herbal drinks for maximum benefits, shedding light on tea manufacturing and preparation processes. This review is a valuable resource for tea enthusiasts, health-conscious individuals, and industry stakeholders, offering profound insights into teas and their multifaceted allure.
Collapse
Affiliation(s)
| | - Nazia Binti Abdul Majid
- Institute of Biological Sciences. Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
| | - Mohd Adnan
- Department of Biology, College of ScienceUniversity of Ha'ilHa'ilSaudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical SciencesUniversity of Ha'ilHa'ilSaudi Arabia
| | - Marek Roszko
- Department of Food Safety and Chemical AnalysisProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research InstituteWarsawPoland
| | - Marcin Bryła
- Department of Food Safety and Chemical AnalysisProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research InstituteWarsawPoland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food SciencesWarsaw University of Life Sciences—SCGWWarsawPoland
| | | |
Collapse
|
3
|
Zhou ZW, Wu QY, Wu Y, Deng TT, Li YQ, Tang LQ, He JH, Sun Y. Dynamic Change of Volatile Fatty Acid Derivatives (VFADs) and Their Related Genes Analysis during Innovative Black Tea Processing. Foods 2024; 13:3108. [PMID: 39410143 PMCID: PMC11475071 DOI: 10.3390/foods13193108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Volatile fatty acid derivatives (VFADs) play a significant role in contributing to flowery-fruity flavor black tea. Innovative black tea is typically crafted from aroma-intensive tea cultivars, such as Jinmudan, using defined production methodologies. In this study, the during-processing tea leaves of innovative black tea were applied as materials, and we selected a total of 45 VFADs, comprising 11 derived aldehydes, nine derived alcohols, and 25 derived esters. Furthermore, the dynamic variations of these VFADs were uncovered. Transcriptome analysis was performed to identify genes involved in the LOX (lipoxygenase) pathway, resulting in the identification of 17 CsLOX genes, one hydrogen peroxide lyase (CsHPL) gene, 11 alcohol dehydrogenases (CsADH) genes, 11 genes as acyl CoA oxidase (CsACOX) genes, and three allene oxide synthase (CsAOS) genes. Additionally, the expression levels of these genes were measured, indicating that the processing treatments of innovative black tea, particularly turn-over and fermentation, had a stimulation effect on most genes. Finally, qRT-PCR verification and correlation analysis were conducted to explain the relationship between VFADs and candidate genes. This study aims to provide a reference for illuminating the formation mechanisms of aroma compounds in innovative black tea, thereby inspiring the optimization of innovative processing techniques and enhancing the overall quality of black tea.
Collapse
Affiliation(s)
- Zi-Wei Zhou
- College of Bioscience and Engineering, Ningde Normal University, Ningde 352000, China; (Z.-W.Z.); (Y.-Q.L.); (L.-Q.T.)
| | - Qing-Yang Wu
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.-Y.W.); (Y.W.); (T.-T.D.); (J.-H.H.)
| | - Yang Wu
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.-Y.W.); (Y.W.); (T.-T.D.); (J.-H.H.)
| | - Ting-Ting Deng
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.-Y.W.); (Y.W.); (T.-T.D.); (J.-H.H.)
| | - Yu-Qing Li
- College of Bioscience and Engineering, Ningde Normal University, Ningde 352000, China; (Z.-W.Z.); (Y.-Q.L.); (L.-Q.T.)
| | - Li-Qun Tang
- College of Bioscience and Engineering, Ningde Normal University, Ningde 352000, China; (Z.-W.Z.); (Y.-Q.L.); (L.-Q.T.)
| | - Ji-Hang He
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.-Y.W.); (Y.W.); (T.-T.D.); (J.-H.H.)
| | - Yun Sun
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.-Y.W.); (Y.W.); (T.-T.D.); (J.-H.H.)
| |
Collapse
|
4
|
Gao C, Wang Z, Wu W, Zhou Z, Deng X, Chen Z, Sun W. Transcriptome and metabolome reveal the effects of ABA promotion and inhibition on flavonoid and amino acid metabolism in tea plant. TREE PHYSIOLOGY 2024; 44:tpae065. [PMID: 38857368 DOI: 10.1093/treephys/tpae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Flavonoids (especially anthocyanins and catechins) and amino acids represent a high abundance of health-promoting metabolites. Although we observed abscisic acid accumulation in purple leaves and low levels in albino tea leaves, the specific mechanism behind its impact on flavor compounds remains unclear. In this study, we treated tea leaves with exogenous abscisic acid and abscisic acid biosynthesis inhibitors (Flu), measured physiological indicators and conducted comprehensive transcriptomic and metabolomic analyses to elucidate the potential mechanisms underlying color change. Our results demonstrate that abscisic acid treatment induces purple coloration, while Flu treatment causes discoloration in tea leaves. Metabolomic analysis revealed higher levels of four anthocyanins and six catechins in the group treated with abscisic acid in comparison with the control group. Additionally, there was a notable increase in 15 amino acids in the Flu-treated group. Notably, the levels of flavonoids and amino acids showed an inverse relationship between the two treatments. Transcriptomic comparison between the treatments and the control group revealed upregulation of differentially expressed genes encoding dihydroflavonol reductase and uridine diphosphate-glycose flavonoid glycosyltransferase in the abscisic acid-treated group, leading to the accumulation of identified anthocyanins and catechins. In contrast, differentially expressed genes encoding nitrate reductase and nitrate transporter exhibited elevated expression in the group treated with Flu, consequently facilitating the accumulation of amino acids, specifically L-theanine and L-glutamine. Furthermore, our co-expression network analysis suggests that MYB and bHLH transcription factors may play crucial roles in regulating the expression of differentially expressed genes involved in the biosynthesis of flavonoids and amino acids. This study provides insights for targeted genetic engineering to enhance the nutritional and market value of tea, together with the potential application of purple and albino tea leaves as functional beverages. It also offers guidance for future breeding programs and production.
Collapse
Affiliation(s)
- Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Weiwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| | - Zhidan Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, East Second Ring Road, Anxi County, Quanzhou, Fujian 362400, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
- Engineering Technology and Research Center of Fujian Tea Industry, Fujian Agriculture and Forestry University, Shangxiadian Road 15, Cangshan District, Fuzhou, Fujian 350002, China
| |
Collapse
|
5
|
Xia H, Chen W, Hu D, Miao A, Qiao X, Qiu G, Liang J, Guo W, Ma C. Rapid discrimination of quality grade of black tea based on near-infrared spectroscopy (NIRS), electronic nose (E-nose) and data fusion. Food Chem 2024; 440:138242. [PMID: 38154280 DOI: 10.1016/j.foodchem.2023.138242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
For the manufacturing and sale of tea, rapid discrimination of overall quality grade is of great importance. However, present evaluation methods are time-consuming and labor-intensive. This study investigated the feasibility of combining advantages of near-infrared spectroscopy (NIRS) and electronic nose (E-nose) to assess the tea quality. We found that NIRS and E-nose models effectively identify taste and aroma quality grades, with the highest accuracies of 99.63% and 97.00%, respectively, by comparing different principal component numbers and classification algorithms. Additionally, the quantitative models based on NIRS predicted the contents of key substances. Based on this, NIRS and E-nose data were fused in the feature-level to build the overall quality evaluation model, achieving accuracies of 98.13%, 96.63% and 97.75% by support vector machine, K-nearest neighbors, and artificial neural network, respectively. This study reveals that the integration of NIRS and E-nose presents a novel and effective approach for rapidly identifying tea quality.
Collapse
Affiliation(s)
- Hongling Xia
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Die Hu
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Aiqing Miao
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Xiaoyan Qiao
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Guangjun Qiu
- Institute of Facility Agriculture of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Jianhua Liang
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China
| | - Weiqing Guo
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan, Guangdong Province 528000, PR China.
| | - Chengying Ma
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China.
| |
Collapse
|
6
|
Wu J, Deng X, Sun Y, Li J, Dai H, Qi S, Huang Y, Sun W. Aged oolong tea alleviates dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota and its metabolites. Food Chem X 2024; 21:101102. [PMID: 38268839 PMCID: PMC10805651 DOI: 10.1016/j.fochx.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/26/2024] Open
Abstract
In this study, the mechanism of aged oolong tea (AOT) to alleviate colitis was investigated in terms of microbiome, metabolome, and fecal microbiota transplantation (FMT). AOT storage period could alleviate colitis in mice and there were some differences in AOT between storage periods, especially AOT-10. AOT improves UC by modulating oxidative stress and inflammatory factors and upregulating intestinal tight junction protein expression (Occludin, Claudin-1, ZO-1 and MUC2), which is associated with the recovery of gut microbiota. FMT and targeted metabolomics further demonstrate that the anti-inflammatory effects of AOT can reshape the gut microbiota through faecal bacterial transfer. Anti-inflammatory effects are exerted through the stimulation of metabolic pathways associated with amino acid, fatty acid and bile acid metabolites. Importantly, the study identified key bacteria (e.g., Sutterella, Clostridiaceae_Clostridium, Mucispirillum, Oscillospira and Ruminococcus) for the development and remission of inflammation. Conclusively, AOT may have great potential in the future adjuvant treatment of colitis.
Collapse
Affiliation(s)
- Jun Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyu Qi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Wang Z, Liang Y, Gao C, Wu W, Kong J, Zhou Z, Wang Z, Huang Y, Sun W. The flavor characteristics and antioxidant capability of aged Jinhua white tea and the mechanisms of its dynamic evolution during long-term aging. Food Chem 2024; 436:137705. [PMID: 37839126 DOI: 10.1016/j.foodchem.2023.137705] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
This study explored the sensory characteristics, metabolites and antioxidant capability of aged Jinhua white tea (AJWT) over different years of aging and revealed the transformation mechanism of these characteristics during the long-term aging process. The flavor wheel of AJWT was constructed, and its unique flavor was dominated by mellowness, smoothness, a fungus fragrance, and a stale flavor. The high content of theabrownine, soluble sugar, flavonoids and 25 aroma components made important contributions to the formation of the unique flavor of the AJWT, and their content significantly increased during the long-term aging process of 5-10 years. This was related to the microbial bioconversion, the oxidative degradation of catechins, the hydrolysis of flavonosides and the decomposition of polysaccharides. Contrary to folk experience, AJWT had weak comprehensive antioxidant capacity, mainly due to its low content of tea polyphenols, catechin components and caffeine, which decreased significantly during the long-term aging of 5-10 years.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilin Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenxi Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiwei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiumei Kong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihua Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362406, China.
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Liu C, Li J, Li H, Xue J, Wang M, Jian G, Zhu C, Zeng L. Differences in the quality of black tea ( Camellia sinensis var. Yinghong No. 9) in different seasons and the underlying factors. Food Chem X 2023; 20:100998. [PMID: 38144863 PMCID: PMC10739754 DOI: 10.1016/j.fochx.2023.100998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Spring green tea is usually considered to be better than summer green tea. Whether this phenomenon applies to black tea is unknown. Black tea produced using Camellia sinensis var. Yinghong No. 9 leaves is popular in South China and analyzed in the study. The taste and color quality of the infusion was higher for spring tea than for summer tea. Compared with summer tea, the main catechin contents were lower in spring tea, whereas caffeine and total amino acid contents were higher, especially glutamic acid, which may be responsible for the differences between teas. Moreover, spring tea had a higher theabrownin content and a lower L* value. The compounds contributing to the infusion taste and color were correlated with the chromaticity value (i.e., useful indicator of black tea quality). This study revealed the seasonal differences in Yinghong No. 9 black tea quality and the key underlying factors.
Collapse
Affiliation(s)
- Chengshun Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China
| | - Hanxiang Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jinghua Xue
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Miao Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guotai Jian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
9
|
Peng Q, Li S, Zheng H, Meng K, Jiang X, Shen R, Xue J, Xie G. Characterization of different grades of Jiuqu hongmei tea based on flavor profiles using HS-SPME-GC-MS combined with E-nose and E-tongue. Food Res Int 2023; 172:113198. [PMID: 37689946 DOI: 10.1016/j.foodres.2023.113198] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
In order to distinguish different grades of Jiuqu hongmei tea (black tea), four different grades of Jiuqu hongmei tea were used as materials in this study: Super Grade (SuG), First Grade (FG), Second Grade (SG), and Third Grade (TG). HS-SPME-GC-MS combined with electronic nose (E-nose) and electronic tongue (E-tongue) technology was used to detect and analyze tea samples. The results showed that 162 volatile substances were identified, mainly alcohols, followed by hydrocarbons, aldehydes, ketones and esters. Twenty-nine volatile compounds were found in all grades of tea samples. The results of heat map analysis showed that the relative contents of five volatile compounds in different grades of Jiuqu hongmei tea were positively correlated with the grades of Jiuqu hongmei tea. By orthogonal partial least squares discriminant analysis (OPLS-DA), 35 different compounds of SuG and FG, 30 different compounds of SG and TG, 34 different compounds of FG and SG were found. Overall, the results indicated that there were significant differences in volatile compounds among different grades of Jiuqu hongmei tea, and the use of HS-SPME-GC-MS combined with E-nose and E-tongue could provide a scientific reference method as an effective tool for detecting flavor characteristics of other types of black tea grades.
Collapse
Affiliation(s)
- Qi Peng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China; National Engineering Research Center for Chinese CRW (Branch Center), Shaoxing University, 900 Chengnan Road, Shaoxing 312000, Zhejiang, China
| | - Shanshan Li
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Huajun Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Kai Meng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Xi Jiang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Rui Shen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Jingrun Xue
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
10
|
Zhang S, Shan X, Niu L, Chen L, Wang J, Zhou Q, Yuan H, Li J, Wu T. The Integration of Metabolomics, Electronic Tongue, and Chromatic Difference Reveals the Correlations between the Critical Compounds and Flavor Characteristics of Two Grades of High-Quality Dianhong Congou Black Tea. Metabolites 2023; 13:864. [PMID: 37512571 PMCID: PMC10385030 DOI: 10.3390/metabo13070864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Tea's biochemical compounds and flavor quality vary depending on its grade ranking. Dianhong Congou black tea (DCT) is a unique tea category produced using the large-leaf tea varieties from Yunnan, China. To date, the flavor characteristics and critical components of two grades of high-quality DCT, single-bud-grade DCT (BDCT), and special-grade DCT (SDCT) manufactured mainly with single buds and buds with one leaf, respectively, are far from clear. Herein, comparisons of two grades were performed by the integration of human sensory evaluation, an electronic tongue, chromatic differences, the quantification of major components, and metabolomics. The BDCT possessed a brisk, umami taste and a brighter infusion color, while the SDCT presented a comprehensive taste and redder liquor color. Quantification analysis showed that the levels of total polyphenols, catechins, and theaflavins (TFs) were significantly higher in the BDCT. Fifty-six different key compounds were screened by metabolomics, including catechins, flavone/flavonol glycosides, amino acids, phenolic acids, etc. Correlation analysis revealed that the sensory features of the BDCT and SDCT were attributed to their higher contents of catechins, TFs, theogallin, digalloylglucose, and accumulations of thearubigins (TRs), flavone/flavonol glycosides, and soluble sugars, respectively. This report is the first to focus on the comprehensive evaluation of the biochemical compositions and sensory characteristics of two grades of high-quality DCT, advancing the understanding of DCT from a multi-dimensional perspective.
Collapse
Affiliation(s)
- Shan Zhang
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xujiang Shan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Linchi Niu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Le Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinjin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Tian Wu
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
11
|
Qiu Z, Liao J, Chen J, Chen P, Sun B, Li A, Pan Y, Liu H, Zheng P, Liu S. The Cultivar Effect on the Taste and Aroma Substances of Hakka Stir-Fried Green Tea from Guangdong. Foods 2023; 12:2067. [PMID: 37238885 PMCID: PMC10217579 DOI: 10.3390/foods12102067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The flavor and quality of tea largely depends on the cultivar from which it is processed; however, the cultivar effect on the taste and aroma characteristics of Hakka stir-fried green tea (HSGT) has received little attention. High-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), and sensory evaluations were used to detect and predict the essential taste and aroma-contributing substances of HSGTs made from Huangdan (HD), Meizhan (MZ) and Qingliang Mountain (QL) cultivars. Orthogonal partial least squares data analysis (OPLS-DA) ranked four substances that putatively distinguished the tastes of the HSGTs, epigallocatechin gallate (EGCG) > theanine > epigallocatechin (EGC) > epicatechin gallate (ECG). Ten substances with variable importance in projections (VIPs) ≥ 1 and odor activation values (OAVs) ≥ 1 contributed to their overall aromas, with geranylacetone having the most significant effect on HD (OAV 1841), MZ (OAV 4402), and QL (OAV 1211). Additionally, sensory evaluations found that HD was relatively equivalent to QL in quality, and both were superior to MZ. HD had a distinct floral aroma, MZ had a distinct fried rice aroma, and QL had a balance of fried rice and fresh aromas. The results provide a theoretical framework for evaluating the cultivar effect on the quality of HSGT and put forward ideas for future HSGT cultivar development.
Collapse
Affiliation(s)
- Zihao Qiu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Jinmei Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Jiahao Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Peifen Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Ansheng Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Yiyu Pan
- Meizhou Runqi Culture and Technology Development Co., Ltd., Meizhou 514000, China;
| | - Hongmei Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.Q.); (J.L.); (J.C.); (P.C.); (B.S.); (H.L.); (P.Z.)
| |
Collapse
|