1
|
Zou J, Wu W, Wang F, Hou K. The foundation of the rhubarb industry economy: investigating metabolites disparities of rhubarb between varieties and growing environments on the Tibetan plate. Front Pharmacol 2024; 15:1461523. [PMID: 39399469 PMCID: PMC11467420 DOI: 10.3389/fphar.2024.1461523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Objective In Tibetan dietary and folk medicine practices, Rheum austral is commonly used as an alternative to Rheum tanguticum, and there is a prevailing belief that wild rhubarb should not be substituted by its cultivated counterpart. However, these traditions are not supported by scientific evidence, particularly concerning the differences in endogenous metabolites between cultivated and wild rhubarbs, as well as between officially recognized and non-official rhubarbs. These uncertainties have also been hindering the vertical integration development of the local rhubarb industry. Methods In this study, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) and biostatistical analysis were employed to systematically and comprehensively investigate the chemical constituents of rhubarbs from various sources, focusing on the differences in metabolic components between cultivated and wild rhubarbs. Results The metabolic differences in rhubarb from various varieties and environments are pronounced. Among them, 39 differential metabolites were identified between cultivated R. tanguticum and wild R. tanguticum. cultivated R. tanguticum is rich in emodin, physcion, and rhapontigenin, whereas wild R. tanguticum exhibits a higher concentration of rhaponticin and is particularly abundant in anthraquinone compounds. Additionally, 33 differential metabolites distinguished wild R. tanguticum from wild R. austral, with R. austral being rich in stilbene derivatives and wild R. tanguticum predominantly containing coumarins. The correlations among these differential metabolites have also been further explored and presented. Conclusion The metabolic disparities between cultivated and wild rhubarb varieties are substantial, with wild rhuabarb containing higher levels of effective components than its cultivated counterparts. However, wild varieties face issues with component instability and resource depletion, while cultivated varieties exhibit more stable effective components. Given these significant differences in metabolic components, it is essential to differentiate rhubarbs from various species and growing conditions to suit specific medicinal and dietary purposes effectively. This paper can lay a theoretical foundation for the vertical integration development of the rhubarb industry in Tibetan areas.
Collapse
Affiliation(s)
- Jinpeng Zou
- College of Management, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fang Wang
- College of Management, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kai Hou
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Guo Z, Cai L, Liu C, Zhang Y, Wang L, Liu H, Feng Y, Pan G, Ma W. Comparative Metabolome Profiling for Revealing the Effects of Different Cooking Methods on Glutinous Rice Longjing57 ( Oryza sativa L. var. Glutinosa). Foods 2024; 13:1617. [PMID: 38890846 PMCID: PMC11171517 DOI: 10.3390/foods13111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Glutinous rice (GR), an important food crop in Asia, provides prolonged energy for the human body due to its high amylopectin content. The non-volatile metabolites generated by different cooking methods that affect the nutritional value and color of GR are still poorly understood. Herein, a widely targeted metabolomics approach was used to understand the effects of different cooking methods (steaming, baking, and frying) on the metabolite profiles of GR. Compared with other treatments, steamed GR had a brighter color and significantly lower contents of total sugar, starch, amylopectin, and amylose, at 40.74%, 14.13%, 9.78%, and 15.18%, respectively. Additionally, 70, 108, and 115 metabolites were significantly altered in the steaming, baking, and frying groups respectively, and amino acid and carbohydrate metabolism were identified as the representative metabolic pathways based on KEGG annotations. Further evaluation of 14 amino acids and 12 carbohydrates in steamed GR, especially 4-aminobutyric acid, suggested its high nutraceutical value. Additionally, multivariate analysis indicated that total sugar content, amylose content, beta-alanine methyl ester hydrochloride, and 4-aminobutyric acid played a critical role in color formation in raw and cooked GR. Finally, the levels of major amino acids and carbohydrates were quantified by conventional methods to verify the reliability of the metabolome. Consequently, this in-depth understanding of metabolite profiling in normal cooking methods has provided a foundation for the processing of GR products.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 157041, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi 157041, China
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 157041, China
| | - Yunjiang Zhang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 157041, China
| | - Linan Wang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 157041, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanjiang Feng
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 157041, China
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 157041, China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, Jiamusi 157041, China
| |
Collapse
|
3
|
Maimaitiyiming R, Zhang H, Wang J, Wang L, Zhao L, Liu B, Chen K, Aihaiti A. A Novel Strategy for Mixed Jam Evaluation: Apparent Indicator, Sensory, Metabolomic, and GC-IMS Analysis. Foods 2024; 13:1104. [PMID: 38611408 PMCID: PMC11011859 DOI: 10.3390/foods13071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Jam is a popular traditional and modern food product for daily consumption. However, the benefits of mixed jams over single-fruit jams have not been thoroughly explored, with analyses limited to superficial indices. In this study, Xinjiang special Morus nigra L. and Prunus domestica L. were used as raw materials to prepare single-fruit and mixed jams, and their differences in antioxidants, organoleptic qualities, pH, texture, and color were analyzed. The dynamics of metabolites before and after thermal processing were assessed using untargeted metabolomics. The results indicate that the main metabolites were flavonoids, terpenoids, amino acids, phenolic acids, and carbohydrates. Flavonoid metabolites changed significantly after thermal processing, with 40 up-regulated and 13 down-regulated. During storage, polyphenols were the prominent differential metabolites, with fifty-four down-regulated and one up-regulated. Volatile aroma components were analyzed using gas chromatography-ion mobility spectrometry (GC-IMS); the aroma components E-2-hexenal, E-2-pentenal, 3-methylbutanal, 1-penten-3-ol, tetrahydro-linalool, 1-penten-3-one, hexyl propionate, isoamyl acetate, α-pinene, and propionic acid in mixed jam were significantly higher than in single-fruit jam. In this study, untargeted metabolomics and GC-IMS were used to provide a more comprehensive and in-depth evaluation system for jam analysis.
Collapse
Affiliation(s)
- Ruxianguli Maimaitiyiming
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Huimin Zhang
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Jiayi Wang
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Liang Wang
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Lei Zhao
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Bingze Liu
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Keping Chen
- Xinjiang Huize Food Limited Liability Company, Urumqi 830046, China;
| | - Aihemaitijiang Aihaiti
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| |
Collapse
|
4
|
Tan J, Fu B, Zhao X, Ye L. Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. Eur J Drug Metab Pharmacokinet 2024; 49:131-147. [PMID: 38123834 DOI: 10.1007/s13318-023-00874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota, known as the second human genome, plays a vital role in modulating drug metabolism, significantly impacting therapeutic outcomes and adverse effects. Emerging research has elucidated that the microbiota mediates a range of modifications of drugs, leading to their activation, inactivation, or even toxication. In diverse individuals, variations in the gut microbiota can result in differences in microbe-drug interactions, underscoring the importance of personalized approaches in pharmacotherapy. However, previous studies on drug metabolism in the gut microbiota have been hampered by technical limitations. Nowadays, advances in biotechnological tools, such as microbially derived metabolism screening and microbial gene editing, have provided a deeper insight into the mechanism of drug metabolism by gut microbiota, moving us toward personalized therapeutic interventions. Given this situation, our review summarizes recent advances in the study of gut-microbiota-mediated drug metabolism and showcases techniques and models developed to navigate the challenges posed by the microbial involvement in drug action. Therefore, we not only aim at understanding the complex interaction between the gut microbiota and drugs and outline the development of research techniques and models, but we also summarize the specific applications of new techniques and models in researching gut-microbiota-mediated drug metabolism, with the expectation of providing new insights on how to study drug metabolism by gut microbiota.
Collapse
Affiliation(s)
- Jianling Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Hu Z, Ma Y, Liu J, Fan Y, Zheng A, Gao P, Wang L, Liu D. Assessment of the Bioaccessibility of Carotenoids in Goji Berry ( Lycium barbarum L.) in Three Forms: In Vitro Digestion Model and Metabolomics Approach. Foods 2022; 11:foods11223731. [PMID: 36429323 PMCID: PMC9689010 DOI: 10.3390/foods11223731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Goji berry (Lycium barbarum L., LBL) is a good source of carotenoids, while the bioaccessibility of various types of LBL carotenoids has not been explored. In the study, eight carotenoids, three carotenoid esters and two carotenoid glycosylated derivatives were identified by a non−targeted metabolomics approach. The dried LBL (DRI), LBL in water (WAT), and LBL in “Baijiu” (WIN) were used to recreate the three regularly chosen types of utilization, and the in vitro digestion model showed that the bioaccessibility of the carotenoids increased significantly from the oral to the gastric and intestinal phase (p < 0.05). The bioaccessibility of LBL carotenoids was the most elevated for DRI (at 28.2%), followed by WIN and WAT (at 24.9% and 20.3%, respectively). Among the three carotenoids, zeaxanthin dipalmitate showed the highest bioaccessibility (51.8−57.1%), followed by β−carotene (51.1−55.6%) and zeaxanthin (45.2−56.3%). However, the zeaxanthin from DRI exhibited significantly higher bioaccessibility (up to 58.3%) than WAT and WIN in both the gastric and intestinal phases (p < 0.05). Results of antioxidant activity tests based on DPPH, FRAP, and ABTS showed that the addition of lipids improved the bioaccessibility of the carotenoids. (p < 0.05).
Collapse
Affiliation(s)
- Ziying Hu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- National Key Laboratory for Market Supervision of Quality and Safety of Goji Berry & Wine, Yinchuan 750021, China
| | - Yanan Ma
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Jun Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yijun Fan
- School of Statistics, University of International Business and Economics, Beijing 100029, China
| | - Anran Zheng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Pengyan Gao
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Liang Wang
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Dunhua Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
- National Key Laboratory for Market Supervision of Quality and Safety of Goji Berry & Wine, Yinchuan 750021, China
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Correspondence: ; Tel.: +86-13995288707
| |
Collapse
|