1
|
Shi L, Jia W, Zhang R, Fan Z, Bian W, Mo H. High-throughput analysis of hazards in novel food based on the density functional theory and multimodal deep learning. Food Chem 2024; 442:138468. [PMID: 38266417 DOI: 10.1016/j.foodchem.2024.138468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The emergence of cultured meat presents the potential for personalized food additive manufacturing, offering a solution to address future food resource scarcity. Processing raw materials and products in synthetic food products poses challenges in identifying hazards, impacting the entire industrial chain during the industry's further evolution. It is crucial to examine the correlation of biological information at different levels and to reveal the temporal dynamics jointly. Proposed active prevention method includes four aspects: (i) Investigating the molecular-level mechanism underlying the binding and dissociation of hazards with proteins represents a novel approach to mitigate matrix effect. (ii) Identifying distinct fragments is a pivotal advancement toward developing a novel screening strategy for hazards throughout the food chain. (iii) Designing an artificial intelligence model-based approach to acquire multi-dimensional histology data also holds significant potential for various applications. (iv) Integrating multimodal data is a practical approach to enhance evaluation and feedback control accuracy.
Collapse
Affiliation(s)
- Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Testing Institute of Product Quality Supervision, Xi'an, Shaanxi 710048, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China; Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an 710075, China.
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenwen Bian
- Shaanxi Testing Institute of Product Quality Supervision, Xi'an, Shaanxi 710048, China
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Lee SH, Choi J. The Need for Research on the Comparison of Sensory Characteristics between Cultured Meat Produced Using Scaffolds and Meat. Food Sci Anim Resour 2024; 44:269-283. [PMID: 38764515 PMCID: PMC11097029 DOI: 10.5851/kosfa.2023.e81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 05/21/2024] Open
Abstract
Cultured meat is one of the research areas currently in the spotlight in the agricultural and livestock industry, and refers to cells obtained from livestock that are proliferated and differentiated and processed into edible meat. These cell-cultured meats are mainly studied at the lab-scale by culturing them in flasks, and for commercial use, they are produced using scaffolds that mimic cell supports. Scaffolds are broadly divided into fiber scaffolds, hydrogels, and micro-carrier beads, and these are classified according to processing methods and materials. In particular, a scaffold is essential for mass production, which allows it to have appearance, texture, and flavor characteristics similar to meat. Because cultured meat is cultured in a state where oxygen is blocked, it may be lighter in color or produce less flavor substances than edible meat, but these can be compensated for by adding natural substances to the scaffolds or improving fat adhesion. In addition, it has the advantage of being able to express the texture characteristics of the scaffolds that make up the meat in various ways depending on the materials and manufacturing methods of the scaffolds. As a result, to increase consumers' preference for cultured meat and its similarity to edible meat, it is believed that manufacturing scaffolds taking into account the characteristics of edible meat will serve as an important factor. Therefore, continued research and interest in scaffolds is believed to be necessary.
Collapse
Affiliation(s)
- Sol-Hee Lee
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
3
|
Wang Y, Zhong Z, Wang R, Munawar N, Zan L, Zhu J. Effects of proanthocyanidins and dialdehyde chitosan on the proliferation and differentiation of bovine myoblast for cultured meat production. Int J Biol Macromol 2023; 246:125618. [PMID: 37392917 DOI: 10.1016/j.ijbiomac.2023.125618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Cultured meat technology intends to manufacture meat by cultivating muscle stem cells in vitro, which is an emerging methodology in meat production. However, the insufficient stemness of bovine myoblasts cultivated in vitro declined the ability of cell expansion and myogenic differentiation, which limited the production of cultured meat. Therefore, in this study, we introduced proanthocyanidins (PC, natural polyphenolic compounds) and dialdehyde chitosan (DAC, natural polysaccharides) to explore the effects of proliferation and differentiation of bovine myoblasts in vitro. The experiment results revealed that PC and DAC promoted cell proliferation by improving the transition from G1 to the S phase as well as cell division in G2. Meanwhile, the myogenic differentiation of cells was further boosted by the combined PC and DAC up-regulation of MYH3 expression. Moreover, the study revealed the synergistic effect of PC and DAC on enhancing the structural stability of collagen, and bovine myoblasts demonstrated excellent growth and dispersion ability on collagen scaffolds. It is concluded that both PC and DAC promote the proliferation and differentiation of bovine myoblasts, contributing to the development of cultured meat production systems.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhihao Zhong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruiqi Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Guan X, Yan Q, Ma Z, Zhou J. Production of mature myotubes in vitro improves the texture and protein quality of cultured pork. Food Funct 2023; 14:3576-3587. [PMID: 36946193 DOI: 10.1039/d3fo00445g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Cultured meat technology provides a promising strategy for the production of meat protein, which is an important nutrient in daily life. Currently, there is still a lack of systematic research on the basic determinants of the texture and protein quality of cultured meat. Here we first developed a chemically defined serum-free medium consisting of serum substitutes and the differentiation-promoting natural compound naringenin (NAR), which showed excellent efficacy in inducing differentiation of porcine satellite cells (PSCs) to generate mature myotubes in vitro. Then, cultured pork samples consisting of proliferating PSCs or differentiated myotubes were manufactured by culturing PSCs in different media with textured vegetable protein (TVP) scaffolds. By analyzing the appearance, texture, chemical composition, and amino acid ratio of these cultured pork samples, we found that the content and maturity of myotubes in cultured meat play an essential role in determining its quality as meat. These findings contribute to the commercial application and establishment of standards for cultured meat as a new protein food.
Collapse
Affiliation(s)
- Xin Guan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiyang Yan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhenwu Ma
- College of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|