1
|
Shen M, Sogore T, Ding T, Feng J. Modernization of digital food safety control. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:93-137. [PMID: 39103219 DOI: 10.1016/bs.afnr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Foodborne illness remains a pressing global issue due to the complexities of modern food supply chains and the vast array of potential contaminants that can arise at every stage of food processing from farm to fork. Traditional food safety control systems are increasingly challenged to identify these intricate hazards. The U.S. Food and Drug Administration's (FDA) New Era of Smarter Food Safety represents a revolutionary shift in food safety methodology by leveraging cutting-edge digital technologies. Digital food safety control systems employ modern solutions to monitor food quality by efficiently detecting in real time a wide range of contaminants across diverse food matrices within a short timeframe. These systems also utilize digital tools for data analysis, providing highly predictive assessments of food safety risks. In addition, digital food safety systems can deliver a secure and reliable food supply chain with comprehensive traceability, safeguarding public health through innovative technological approaches. By utilizing new digital food safety methods, food safety authorities and businesses can establish an efficient regulatory framework that genuinely ensures food safety. These cutting-edge approaches, when applied throughout the food chain, enable the delivery of safe, contaminant-free food products to consumers.
Collapse
Affiliation(s)
- Mofei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Zhongyuan Institute, Zhengzhou, Henan, P.R. China
| | - Tahirou Sogore
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, P.R. China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, P.R. China.
| |
Collapse
|
2
|
Goodchild J, Chen YJ, Blythe J, Firth LC, Hirst E, Bess K, Bristow J, Willis J, Baines R, Cash F, Muehlebach M, Buchholz A, Rendler S, Earley F, Crossthwaite A. A novel class of insecticidal alkylsulfones are potent inhibitors of vesicular acetylcholine transport. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105854. [PMID: 38685234 DOI: 10.1016/j.pestbp.2024.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024]
Abstract
Pyridine alkylsulfone derivatives typified by oxazosulfyl (Sumitomo Chemical Company Ltd.) and compound A2 (Syngenta) represent a new class of insecticides, with potent activity against several insect orders. Whilst the MOA of this class has been attributed to interaction with the voltage-gated sodium channel (VGSC), here we present strong evidence that their toxicity to insects is mediated primarily through inhibition of the vesicular acetylcholine transporter (VAChT). Alkylsulfone intoxication in insects is characterised by (i) a reduction in cholinergic synaptic transmission efficiency demonstrated by a depression of cercal afferent activity in giant-interneurone preparations of American cockroach (Periplaneta americana), (ii) selective block of cholinergic-transmission dependent post-synaptic potentials in the Drosophila giant-fibre pathway and (iii) abolition of miniature excitatory post-synaptic currents (mEPSCs) in an identified synapse in Drosophila larvae. Ligand-binding studies using a tritiated example compound ([3H]-A1) revealed a single saturable binding-site, with low nanomolar Kd value, in membrane fractions of green bottle fly (Lucilia sericata). Binding is inhibited by vesamicol and by several examples of a previously identified class of insecticidal compounds known to target VAChT, the spiroindolines. Displacement of this binding by analogues of the radioligand reveals a strong correlation with insecticidal potency. No specific binding was detected in untransformed PC12 cells but a PC12 line stably expressing Drosophila VAChT showed similar affinity for [3H]-A1 as that seen in fly head membrane preparations. Previously identified VAChT point mutations confer resistance to the spiroindoline class of insecticides in Drosophila by Gal-4/UAS directed expression in cholinergic neurones and by CRISPR gene-editing of VAChT, but none of these flies show detectable cross-resistance to this new chemical class. Oxazosulfyl was previously shown to stabilise voltage-gated sodium channels in their slow-inactivated conformation with an IC50 value of 12.3μM but inhibits binding of [3H]-A1 with approximately 5000 times greater potency. We believe this chemistry class represents a novel mode-of-action with high potential for invertebrate selectivity.
Collapse
Affiliation(s)
- James Goodchild
- Syngenta, Bioscience, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| | - Ying-Ju Chen
- Syngenta, Bioscience, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Judith Blythe
- Syngenta, Bioscience, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Lucy C Firth
- Syngenta, Bioscience, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Elizabeth Hirst
- Syngenta, Bioscience, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Kirsty Bess
- Syngenta, Bioscience, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Julia Bristow
- Syngenta, Bioscience, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jenny Willis
- Syngenta, Bioscience, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Richard Baines
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Francesca Cash
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Michel Muehlebach
- Syngenta Crop Protection AG, Crop Protection Research, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Anke Buchholz
- Syngenta Crop Protection AG, Crop Protection Research, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Sebastian Rendler
- Syngenta Crop Protection AG, Crop Protection Research, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Fergus Earley
- Syngenta, Bioscience, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Andrew Crossthwaite
- Syngenta, Bioscience, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| |
Collapse
|
3
|
Varjani S, Vyas S, Su J, Siddiqui MA, Qin ZH, Miao Y, Liu Z, Ethiraj S, Mou JH, Lin CSK. Nexus of food waste and climate change framework: Unravelling the links between impacts, projections, and emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123387. [PMID: 38242308 DOI: 10.1016/j.envpol.2024.123387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
This communication explores the intricate relationship between food waste and climate change, considering aspects such as impacts, projections, and emissions. It focuses on the pressing issue of waste generation and its potential consequences if current trends persist, and emphasises the importance of efficient solid waste management in improving environmental quality and fostering economic development. It also highlights the challenges faced by developing countries in waste collection and disposal, drawing comparisons with the waste utilisation methods used by developed nations. The review delves into the link between food waste and climate change, noting the paradoxical situation of food wastage against the backdrop of global hunger and malnutrition. It underscores the scientific evidence connecting food waste to climate change and its implications for food security and climate systems. Additionally, it examines the environmental burden imposed by food waste, including its contribution to greenhouse gas emissions and the depletion of resources such as energy, water, and land. Besides environmental concerns, this communication also highlights the ethical and socioeconomic dimensions of food waste, discussing its influence on Sustainable Development Goals, poverty, and social inequality. The communication concludes by advocating for collective action and the development of successful mitigation strategies, technological solutions, and policy interventions to address food waste and its climate impacts. It emphasises the need for collaboration, awareness, and informed decision-making to ensure a more sustainable and equitable future.
Collapse
Affiliation(s)
- Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Shaili Vyas
- Swinburne University of Technology, Hawthorn, Melbourne, Victoria, 3122, Australia
| | - Junjie Su
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China; Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region of China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Yahui Miao
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Ziyao Liu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Shraya Ethiraj
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China.
| |
Collapse
|
4
|
Wang S, Wu H, Li J, Xiao Q, Li J. Assessment of the Effect of the Main Grain-Producing Areas Policy on China's Food Security. Foods 2024; 13:654. [PMID: 38472767 DOI: 10.3390/foods13050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Food provided a material foundation for the development of human society and was an important cornerstone for ensuring national security. The Chinese government has always attached great importance to food security, which is not only related to economic development and social stability but also to national security and self-reliance. As the core region for grain production and the supply of staple food in China, the major grain-producing areas account for 78.25% of the total national grain output, truly earning the title of China's "granary". Considering the establishment of 13 major grain-producing regions across the country in 2004 as a quasi-natural experiment, the impact of policies in major grain-producing regions on ensuring national food security is examined using a difference-in-differences method based on inter-provincial panel data for 30 provinces across the country from 1997 to 2020, and the mechanisms of their effects are further analyzed. The findings show that (1) the main producing-areas policy has a significant driving effect on China's food security, with an average annual increase of 0.0351 units in the food-security index, and the impact is expanding year by year. (2) The policy of the main grain-producing provinces mainly plays a role in guaranteeing food security by expanding the scale of grain cultivation and the scale of family land management in the main grain-producing provinces, and the scale effect of grain cultivation has a more significant impact. Further adjusting and improving the policy of the main grain-producing areas and expanding the scale-driven effect of this policy are of great significance for transforming agricultural production methods and realizing a strong agricultural country.
Collapse
Affiliation(s)
- Shaohua Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixia Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qin Xiao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Raposo A, Zandonadi RP, Botelho RBA. Challenging the Status Quo to Shape Food Systems Transformation from a Nutritional and Food Security Perspective: Second Edition. Foods 2023; 12:foods12091825. [PMID: 37174363 PMCID: PMC10177921 DOI: 10.3390/foods12091825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Access to and choices of food are doubtless beyond the realms of biological and nutritional needs [...].
Collapse
Affiliation(s)
- António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Renata Puppin Zandonadi
- University of Brasília, Faculty of Health Sciences, Nutrition Department, Campus Universitário Darcy Ribeiro, Brasília 70910-900, Brazil
| | - Raquel Braz Assunção Botelho
- University of Brasília, Faculty of Health Sciences, Nutrition Department, Campus Universitário Darcy Ribeiro, Brasília 70910-900, Brazil
| |
Collapse
|