1
|
Hu W, Pei Z, Xia A, Jiang Y, Yang B, Liu X, Zhao J, Zhang H, Chen W. Lactobacillus helveticus-Derived Whey-Calcium Chelate Promotes Calcium Absorption and Bone Health of Rats Fed a Low-Calcium Diet. Nutrients 2024; 16:1127. [PMID: 38674818 PMCID: PMC11053418 DOI: 10.3390/nu16081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the characteristics of Lactobacillus helveticus-derived whey-calcium chelate (LHWCC) and its effect on the calcium absorption and bone health of rats. Fourier-transform infrared spectroscopy showed that carboxyl oxygen atoms, amino nitrogen atoms, and phosphate ions were the major binding sites with calcium in LHWCC, which has a sustained release effect in simulated in vitro digestion. LHWCC had beneficial effects on serum biochemical parameters, bone biomechanics, and the morphological indexes of the bones of calcium-deficient rats when fed at a dose of 40 mg Ca/kg BW for 7 weeks. In contrast to the inorganic calcium supplement, LHWCC significantly upregulated the gene expression of transient receptor potential cation V5 (TRPV5), TRPV6, PepT1, calcium-binding protein-D9k (Calbindin-D9k), and a calcium pump (plasma membrane Ca-ATPase, PMCA1b), leading to promotion of the calcium absorption rate, whereas Ca3(PO4)2 only upregulated the TRPV6 channel in vivo. These findings illustrate the potential of LHWCC as an organic calcium supplement.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiwen Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aonan Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.H.); (Z.P.); (A.X.); (Y.J.); (B.Y.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Chen X, Fan R, Wang Y, Munir M, Li C, Wang C, Hou Z, Zhang G, Liu L, He J. Bovine milk β-casein: Structure, properties, isolation, and targeted application of isolated products. Compr Rev Food Sci Food Saf 2024; 23:e13311. [PMID: 38445543 DOI: 10.1111/1541-4337.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
β-Casein, an important protein found in bovine milk, has significant potential for application in the food, pharmaceutical, and other related industries. This review first introduces the composition, structure, and functional properties of β-casein. It then reviews the techniques for isolating β-casein. Chemical and enzymatic isolation methods result in inactivity of β-casein and other components in the milk, and it is difficult to control the production conditions, limiting the utilization range of products. Physical technology not only achieves high product purity and activity but also effectively preserves the biological activity of the components. The isolated β-casein needs to be utilized effectively and efficiently for various purity products in order to achieve optimal targeted application. Bovine β-casein, which has a purity higher than or close to that of breast β-casein, can be used in infant formulas. This is achieved by modifying its structure through dephosphorylation, resulting in a formula that closely mimics the composition of breast milk. Bovine β-casein, which is lower in purity than breast β-casein, can be maximized for the preparation of functional peptides and for use as natural carriers. The remaining byproducts can be utilized as food ingredients, emulsifiers, and carriers for encapsulating and delivering active substances. Thus, realizing the intensive processing and utilization of bovine β-casein isolation. This review can promote the industrial production process of β-casein, which is beneficial for the sustainable development of β-casein as a food and material. It also provides valuable insights for the development of other active substances in milk.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Rui Fan
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Yuanbin Wang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Maliha Munir
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Zhanqun Hou
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| |
Collapse
|
3
|
Schrader M, Fricker LD. Current Challenges and Future Directions in Peptidomics. Methods Mol Biol 2024; 2758:485-498. [PMID: 38549031 DOI: 10.1007/978-1-0716-3646-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The field of peptidomics has been under development since its start more than 20 years ago. In this chapter we provide a personal outlook for future directions in this field. The applications of peptidomics technologies are spreading more and more from classical research of peptide hormones and neuropeptides towards commercial applications in plant and food-science. Many clinical applications have been developed to analyze the complexity of biofluids, which are being addressed with new instrumentation, automization, and data processing. Additionally, the newly developed field of immunopeptidomics is showing promise for cancer therapies. In conclusion, peptidomics will continue delivering important information in classical fields like neuropeptides and peptide hormones, benefiting from improvements in state-of-the-art technologies. Moreover, new directions of research such as immunopeptidomics will further complement classical omics technologies and may become routine clinical procedures. Taken together, discoveries of new substances, networks, and applications of peptides can be expected in different disciplines.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| | - Lloyd D Fricker
- Departments of Molecular Pharmacology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|