1
|
Lauteri C, Pennisi L, Di Clerico D, Pennisi V, Vergara A. Low-frequency focused thermosonication for Salmonella typhimurium inactivation: an in vitro study. Ital J Food Saf 2024; 13:12217. [PMID: 39233703 PMCID: PMC11369753 DOI: 10.4081/ijfs.2024.12217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/18/2024] [Indexed: 09/06/2024] Open
Abstract
Customer requests are addressed to safe products that best express their characteristics of "naturalness" and "freshness" for their entire shelf life; therefore, scientific research has been exploring the use of "non-thermal technologies". Thermosonication using low-frequency focused ultrasound determines bacterial inactivation through the phenomenon of "cavitation", guaranteeing high-quality standards of safety, nutrition, and freshness of the products. The present work aims to evaluate the effectiveness of the inactivation of Salmonella typhimurium in culture broth by low-frequency focused thermosonication with two different operational parameters: sublethal temperature (40°C, 50°C) and treatment time (5, 10, and 15 minutes). Treatment determined a bacterial load reduction compared to the negative control (untreated inoculum), which was statistically significant at the t-test (p<0.05). Average decreases of 1.5 log and 3.5 CFU/mL were observed, respectively, after treatment and after 24 hours of storage at +4°C. Treatment at 50°C for 15 minutes was the most effective (average value: 3.06 log CFU/mL; minimum value: 2.13 log CFU/mL; maximum value: 4.59 log CFU/mL). However, strains have shown markable variability: one of them even showed an increase in the microbial load 24 hours after treatment at 40°C for 5 minutes (-0.20 log CFU/mL); however, the same treatment showed a reduction of bacterial charge in all the other strains (average value: 1.05 log CFU/mL; minimum value: -0.20 log CFU/mL; maximum value: 2.28 log CFU/mL). This study poses numerous perspectives on the use of low-frequency focused thermosonication treatment in the food industry as a sustainable and safe alternative to classic thermal treatments.
Collapse
Affiliation(s)
- Carlotta Lauteri
- Department of Veterinary Medicine, School of Specialization in Inspection of Food of Animal Origin “G. Tiecco”, University of Teramo, Località Piano D’Accio;
| | - Luca Pennisi
- Department of Veterinary Medicine, School of Specialization in Inspection of Food of Animal Origin “G. Tiecco”, University of Teramo, Località Piano D’Accio;
| | | | - Viola Pennisi
- Department of Veterinary Medicine, School of Specialization in Inspection of Food of Animal Origin “G. Tiecco”, University of Teramo, Località Piano D’Accio;
| | - Alberto Vergara
- Department of Veterinary Medicine, School of Specialization in Inspection of Food of Animal Origin “G. Tiecco”, University of Teramo, Località Piano D’Accio;
| |
Collapse
|
2
|
Aerts M, Baron S, Bortolaia V, Hendriksen R, Guerra B, Stoicescu A, Beloeil P. Technical specifications for a EU-wide baseline survey of antimicrobial resistance in bacteria from aquaculture animals. EFSA J 2024; 22:e8928. [PMID: 39086460 PMCID: PMC11289621 DOI: 10.2903/j.efsa.2024.8928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The European Commission requested scientific and technical assistance in the preparation of a EU-wide baseline survey of antimicrobial resistance (AMR) in bacteria from aquaculture animals. It is recommended that the survey would aim at estimating the occurrence of AMR in Aeromonas spp. isolated from Atlantic Salmon (Salmo salar), European seabass (Dicentrarchus labrax) and trout (Salmo trutta, Salvelinus fontinalis, Oncorhynchus mykiss) intended to consumption, at harvesting (at farm/slaughter), at the EU level and in addition, at estimating the occurrence and diversity of AMR of Escherichia coli, Enterococcus faecium, Enterococcus faecalis, Vibrio parahaemolyticus and Vibrio alginolyticus in blue mussel (Mytilus edulis) and Mediterranean mussel (Mytilus galloprovincialis) from production areas and at dispatch centres at the EU level. These technical specifications define the target populations, the sample size for the survey, sample collection requirements, the analytical methods (for isolation, identification, phenotypic susceptibility testing and further genotypic analysis of some of the bacteria targeted) and the data reporting requirements. The data to be reported by the EU Member States to support this baseline survey are presented in three data models. The results of the survey should be reported using the EFSA reporting system.
Collapse
|
3
|
Wang D, Wang X, Zhou S, Ren L, Meng Y, Ma R, Wang S, Liu Z, Alamri AS, Alhomrani M, Zhang Z, Cui F, Li T, Li J. Radish residue carbon dots-based novel starch/chitosan film with high antioxidant, biocompatibility, and antibacterial activities for salmon fillets' active packaging. Int J Biol Macromol 2024; 273:133107. [PMID: 38897524 DOI: 10.1016/j.ijbiomac.2024.133107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
The corruption of refrigerated marine fish results in global economic losses exceeding 25 billion euros annually. However, conventional preservatives present challenges, including singular functionality, potential toxicity, and high cost. In response, we developed multifunctional, safe, cost-effective, and environmentally friendly carbon dots derived from radish residues (R-CDs) by using the one-pot hydrothermal method. The surface of R-CDs is enriched with hydroxyl groups, conferring broad-spectrum antioxidant and antibacterial characteristics. R-CDs exhibited a notable 72.92 % inhibition rate on lipid peroxidation, surpassing the effectiveness of vitamin C (46 %). Additionally, R-CDs demonstrated impressive scavenging rates of 93.8 % for 2,2-diphenyl-1-picrylhydrazyl free radicals and 99.36 % for 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid-free radicals. In combating spoilage bacteria such as Aeromonas sobria and Hafnia alvei, R-CDs disrupted cell structures and influenced intracellular substance content. Importantly, co-cultivation with R-CDs showed no significant cytotoxicity. Further incorporating R-CDs into films using starch and chitosan (S/CS/R-CDs films) for efficient and convenient use in salmon fillets preservation. S/CS/R-CDs films effectively inhibited the growth of spoilage bacteria, lipid oxidation, and protein decomposition in salmon fillets, thereby extending shelf life by 4 days. This combination of antioxidant and antibacterial properties in R-CDs, along with the functional films, presents a promising approach for enhancing salmon fillet preservation.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning, 121013, China
| | - Xin Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning, 121013, China
| | - Shanshan Zhou
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning, 121013, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning, 121013, China
| | - Yuqiong Meng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Shulin Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China
| | - Zhiteng Liu
- Dalian Food Co., Ltd., Jinzhou, Liaoning 121209, China
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Zihui Zhang
- Comprehensive Inspection and Testing Center for Agriculture and Animal Husbandry in Chifeng City, Chifeng, Inner Mongolia 024000, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning, 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning, 116029, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
4
|
Russo GL, Langellotti AL, Torrieri E, Masi P. Emerging technologies in seafood processing: An overview of innovations reshaping the aquatic food industry. Compr Rev Food Sci Food Saf 2024; 23:e13281. [PMID: 38284572 DOI: 10.1111/1541-4337.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024]
Abstract
Seafood processing has traditionally been challenging due to the rapid spoilage rates and quality degradation of these products. With the rise of food science and technology, novel methods are being developed to overcome these challenges and improve seafood quality, shelf life, and safety. These methods range from high-pressure processing (HPP) to edible coatings, and their exploration and application in seafood processing are of great importance. This review synthesizes the recent advancements in various emerging technologies used in the seafood industry and critically evaluates their efficacy, challenges, and potential benefits. The technologies covered include HPP, ultrasound, pulsed electric field, plasma technologies, pulsed light, low-voltage electrostatic field, ozone, vacuum cooking, purified condensed smoke, microwave heating, and edible coating. Each technology offers unique advantages and presents specific challenges; however, their successful application largely depends on the nature of the seafood product and the desired result. HPP and microwave heating show exceptional promise in terms of quality retention and shelf-life extension. Edible coatings present a multifunctional approach, offering preservation and the potential enhancement of nutritional value. The strength, weakness, opportunity, and threat (SWOT) analysis indicates that, despite the potential of these technologies, cost-effectiveness, scalability, regulatory considerations, and consumer acceptance remain crucial issues. As the seafood industry stands on the cusp of a technological revolution, understanding these nuances becomes imperative for sustainable growth. Future research should focus on technological refinements, understanding consumer perspectives, and developing regulatory frameworks to facilitate the adoption of these technologies in the seafood industry.
Collapse
Affiliation(s)
| | | | - Elena Torrieri
- CAISIAL Centre, University of Naples Federico II, Portici, Italy
- Department of Agricultural Sciences, Unit of Food Science and Technology-University of Naples Federico II, Portici, Italy
| | - Paolo Masi
- CAISIAL Centre, University of Naples Federico II, Portici, Italy
- Department of Agricultural Sciences, Unit of Food Science and Technology-University of Naples Federico II, Portici, Italy
| |
Collapse
|
5
|
Effect of Different Cold Storage Temperatures on the Evolution of Shucking Yield and Quality Properties of Offshore Cultured Japanese Oyster (Magallana gigas) Treated by High Pressure Processing (HPP). Foods 2023; 12:foods12061156. [PMID: 36981083 PMCID: PMC10048151 DOI: 10.3390/foods12061156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
High pressure processing (HPP) can improve oyster shucking yield immediately after the treatment and increase the microbiological and sensory shelf life of oysters stored at 0–4 °C. However, the evolution of shucking yield during storage has not been previously examined and there are no studies focusing on shelf life at higher storage temperatures. To elucidate both aspects, control and HPP (300 MPa; 2 min) offshore cultivated oysters (Magallana gigas) were stored at 4 and 10 °C for 14 days, analyzing shucking yield, color, texture, microbiological and sensory characteristics. HPP samples showed a higher shucking yield (17% on average) than controls with minimal impact in texture and color, regardless of storage time and temperature. At 10 °C, HPP delayed microbial growth and sensory deterioration, increasing the estimated shelf life of oysters by 3 to 4 days (aerobic plate count < 6 log cycles; overall sensory acceptability > 2). Compared to controls stored at 4 °C, HPP oysters stored at 10 °C presented the same shelf life (5 to 9 days) but with higher shucking yield (up to 25%). In conclusion, HPP is an excellent tool to increase the shucking yield and delay sensory deterioration of oysters stored at 10 °C.
Collapse
|