1
|
Oscar TP. Poultry Food Assess Risk Model for Salmonella and Chicken Gizzards: III. Dose Consumed Step. J Food Prot 2024; 87:100242. [PMID: 38360409 DOI: 10.1016/j.jfp.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
The Dose Consumed step of the Poultry Food Assess Risk Model (PFARM) for Salmonella and chicken gizzards was presented and compared to the Exposure Assessment step of Quantitative Microbial Risk Assessment (QMRA). The specific objectives were 1) to demonstrate the dose consumed step of PFARM for Salmonella and chicken gizzards; 2) to compare Salmonella dose consumed from cooked chicken gizzards to that from cross-contaminated and temperature-abused lettuce; 3) to determine if Salmonella dose consumed changed over time in a production chain; and 4) to compare PFARM and QMRA predictions of Salmonella dose consumed. The PFARM and QMRA were developed in an Excel notebook and simulated with @Risk. Salmonella prevalence and number data (P = 100) for chicken gizzards (56 g) and scenario analysis were used to address objectives 1, 2, and 4, whereas running windows of 60 consecutive chicken gizzard samples and scenario analysis were used to address objective 3. A lot size of 1,000 kg of chicken gizzards was simulated. Mean portion size was 168 g resulting in the simulation of 5,952 meals per lot. Of these, 3.69 ± 0.32% and 0.49 ± 0.07% (mean ± SD) resulted in Salmonella dose consumed of ≥1 per meal from cooked chicken gizzards and lettuce, respectively. However, the total Salmonella dose consumed per lot from cooked chicken gizzards (272 ± 27) was less (P ≤ 0.05) than from lettuce (6,050 ± 4,929) because of a few highly contaminated (>310 Salmonella) lettuce portions at consumption. Over time in the production chain, Salmonella prevalence and total dose consumed per lot changed (P ≤ 0.05) but the patterns differed. The QMRA predicted higher (P ≤ 0.05) Salmonella dose consumed per meal than PFARM. In part, this was because QMRA only simulated contaminated grams, whereas PFARM simulated contaminated and non-contaminated meals. However, other factors, which are discussed, also contributed to the overestimation of Salmonella dose consumed by QMRA.
Collapse
Affiliation(s)
- Thomas P Oscar
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Eastern Regional Research Center, Chemical Residue and Predictive Microbiology Research Unit, Room 2111, Center for Food Science and Technology, University of Maryland Eastern Shore Worksite, Princess Anne, MD 21853, USA.
| |
Collapse
|
2
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, 811 Health Sciences Road, CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, 419 Gordon St, Guelph, ON N1G 2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Wu S, Ji J, Carole NVD, Yang J, Yang Y, Sun J, Ye Y, Zhang Y, Sun X. Combined metabolomics and transcriptomics analysis reveals the mechanism of antibiotic resistance of Salmonella enterica serovar Typhimurium after acidic stress. Food Microbiol 2023; 115:104328. [PMID: 37567621 DOI: 10.1016/j.fm.2023.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 08/13/2023]
Abstract
Drug-resistant Salmonella is widely distributed in the meat production chain, endangering food safety and public health. Acidification of meat products during processing can induce acid stress, which may alter antibiotic resistance. Our study investigated the effects of acid stress on the antibiotic resistance and metabolic profile of Salmonella Typhimurium, and explored the underlying mechanisms using metabolomic and transcriptomic analysis. We found that acid-stressed 14028s was more sensitive to small molecule hydrophobic antibiotics (SMHA) while more resistant to meropenem (MERO). Metabolomic analysis revealed that enhanced sensitivity to SMHA was correlated with increased purine metabolism and tricarboxylic acid cycle. Transcriptomic analysis revealed the downregulation of chemotaxis-related genes, which are also associated with SMHA sensitivity. We also found a significant downregulation of the ompF gene, which encodes a major outer membrane protein OmpF of Salmonella. The decreased expression of OmpF porin hindered the influx of MERO, leading to enhanced resistance of the bacteria to the drug. Our findings contribute to greatly improve the understanding of the relationship between Salmonella metabolism, gene expression, and changes in drug resistance after acid stress, while providing a structural framework for exploring the relationship between bacterial stress responses and antibiotic resistance.
Collapse
Affiliation(s)
- Shang Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Nanfack V D Carole
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, 225000, China
| | - Yang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
4
|
Indiarto R, Irawan AN, Subroto E. Meat Irradiation: A Comprehensive Review of Its Impact on Food Quality and Safety. Foods 2023; 12:1845. [PMID: 37174383 PMCID: PMC10178114 DOI: 10.3390/foods12091845] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Food irradiation is a proven method commonly used for enhancing the safety and quality of meat. This technology effectively reduces the growth of microorganisms such as viruses, bacteria, and parasites. It also increases the lifespan and quality of products by delaying spoilage and reducing the growth of microorganisms. Irradiation does not affect the sensory characteristics of meats, including color, taste, and texture, as long as the appropriate dose is used. However, its influence on the chemical and nutritional aspects of meat is complex as it can alter amino acids, fatty acids, and vitamins as well as generate free radicals that cause lipid oxidation. Various factors, including irradiation dose, meat type, and storage conditions, influence the impact of these changes. Irradiation can also affect the physical properties of meat, such as tenderness, texture, and water-holding capacity, which is dose-dependent. While low irradiation doses potentially improve tenderness and texture, high doses negatively affect these properties by causing protein denaturation. This research also explores the regulatory and public perception aspects of food irradiation. Although irradiation is authorized and controlled in many countries, its application is controversial and raises concerns among consumers. Food irradiation is reliable for improving meat quality and safety but its implication on the chemical, physical, and nutritional properties of products must be considered when determining the appropriate dosage and usage. Therefore, more research is needed to better comprehend the long-term implications of irradiation on meat and address consumer concerns.
Collapse
Affiliation(s)
- Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | | |
Collapse
|