1
|
Li L, Zhao B, Feng Z, Wang D, Yuan T, Song G, Kim SA, Gong J. Role and influence mechanism of different concentration of hyaluronic acid on physicochemical and organoleptic properties of yogurt. J Dairy Sci 2024:S0022-0302(24)01229-3. [PMID: 39414018 DOI: 10.3168/jds.2024-25687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Hyaluronic acid (HA) has been approved to be added to milk and other dairy products, it has highly water-binding ability which can combine with a large number of water molecules through intramolecular hydrogen bonding to form high viscous gels. In addition, HA is one of the prebiotics, can provide health benefits like anti-aging, anti-inflammatory, angiogenic, is a potential additive for enhancing the quality of yogurt. Therefore, the aim of this study was to evaluate the effect of 0%, 0.02%, 0.05%, 0.1%, 0.25% and 0.5% HA on rheological properties, functional properties, thermal stability, protein stability, protein structure and protein fractions of yogurt. The addition of HA, storage modulus (G') is always larger than loss modulus (G'') in all the samples, which is a typical characteristic of gel networks, and the microstructures of the yogurt samples showed a continuous and more homogeneous spatial network structure. Overall, the higher concentration (0.5%) had positive effect on the yogurt characteristics, like higher WHC, foam stability, microstructure, and texture. In contrast, the 0.1% concentration HA lead to a very abnormal results, it had a negative effect on yogurt including water-holding capacity, texture, and protein stability, suggesting structural destabilization and disruption of inter-aggregation before protein. These findings provide a valuable fundamental data for commercialized HA adding yogurt development and quality control processes.
Collapse
Affiliation(s)
- Ling Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Beibei Zhao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Ziyun Feng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Danli Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Tinglan Yuan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Gongshuai Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jinyan Gong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
2
|
Lu B, Zhao S, Zhang J, Zhan J, Zhang J, Liu Z, Zhang J. Anti-inflammatory and antioxidant effects on skin based on supramolecular hyaluronic acid-ectoin. J Mater Chem B 2024; 12:8408-8419. [PMID: 39086221 DOI: 10.1039/d4tb00459k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We addressed the damage caused by internal and external factors on the skin, as well as the aging phenomenon caused by delayed repair after damage. We prepared supramolecular hyaluronic acid-ectoin (HA-ECT) by combining theoretical calculations and experimental research, using intermolecular forces between hyaluronic acid and ectoin. This supramolecule has good stability, safety, and skin permeability and can penetrate the stratum corneum of the skin, reaching the epidermis and dermis of the skin. Compared with ectoin, the permeability of the supramolecule HA-ECT was 3.39-fold higher. Supramolecular HA-ECT can promote the proliferation of keratinocytes and fibroblasts, significantly increase the content of type collagen-I, reduce the expression of inflammatory factors in keratinocytes, and enhance skin hydration and repair effects. HA-ECT can reduce intracellular reactive oxygen species and inhibit the expression of matrix metalloproteinase-1 (reduced by 1.27-fold) to improve skin photoaging. Therefore, supramolecular HA-ECT has potential application in the field of cosmetics for skin antioxidants, anti-aging, and repair.
Collapse
Affiliation(s)
- Beibei Lu
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong, China.
- The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China.
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Siran Zhao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, 100029, China
| | - Jichuan Zhang
- Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen 518055, P. R. China
| | - Jingbo Zhan
- Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen 518055, P. R. China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong, China.
- The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen 518020, Guangdong, China
- Department of Shenzhen People's Hospital Geriatrics Center, Shenzhen 518020, Guangdong, China
| | - Zhe Liu
- Bloomage Biotech Co., Ltd., Jinan, Shandong 250104, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China.
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Wang R, Ding A, Wang J, Wang J, Zhou Y, Chen M, Ju S, Tan M, Xiang Z. Astragalin from Thesium chinense: A Novel Anti-Aging and Antioxidant Agent Targeting IGFR/CD38/ Sirtuins. Antioxidants (Basel) 2024; 13:859. [PMID: 39061927 PMCID: PMC11273813 DOI: 10.3390/antiox13070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Astragalin (AG), a typical flavonoid found in Thesium chinense Turcz (T. chinense), is abundant in various edible plants and possesses high nutritional value, as well as antioxidant and antibacterial effects. In this study, we initially predicted the mechanism of action of AG with two anti-aging and antioxidant-related protein targets (CD38 and IGFR) by molecular docking and molecular dynamics simulation techniques. Subsequently, we examined the anti-aging effects of AG in Caenorhabditis elegans (C. elegans), the antioxidant effects in zebrafish, and verified the related molecular mechanisms. In C. elegans, AG synergistically extended the lifespan of C. elegans by up-regulating the expression of daf-16 through inhibiting the expression of daf-2/IGFR and also activating the AMPK and MAPK pathways to up-regulate the expression of sir-2.1, sir-2.4, and skn-1. In oxidatively damaged zebrafish embryos, AG demonstrated a synergistic effect in augmenting the resistance of zebrafish embryos to oxidative stress by up-regulating the expression levels of SIRT1 and SIRT6 within the zebrafish embryos system via the suppression of CD38 enzymatic activity and then inhibiting the expression of IGFR through high levels of SIRT6. These findings highlight the antioxidant and anti-aging properties of AG and indicate its potential application as a supplementary ingredient in aquaculture for enhancing fish health and growth.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (A.D.); (Y.Z.); (M.C.); (S.J.)
| | - Anping Ding
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (A.D.); (Y.Z.); (M.C.); (S.J.)
| | - Jiaye Wang
- College of Pharmacy, Nanjing Medical University, Nanjing 211166, China;
| | - Jiaxue Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yujie Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (A.D.); (Y.Z.); (M.C.); (S.J.)
| | - Miao Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (A.D.); (Y.Z.); (M.C.); (S.J.)
| | - Shuang Ju
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (A.D.); (Y.Z.); (M.C.); (S.J.)
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zengxu Xiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (R.W.); (A.D.); (Y.Z.); (M.C.); (S.J.)
| |
Collapse
|
4
|
Zhang Y, Wang M, Li P, Lv G, Yao J, Zhao L. Hypoglycemic Effect of Polysaccharides from Physalis alkekengi L. in Type 2 Diabetes Mellitus Mice. BIOLOGY 2024; 13:496. [PMID: 39056690 PMCID: PMC11274298 DOI: 10.3390/biology13070496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disease that adversely impacts patient health. In this study, a T2DM model was established in ICR mice through the administration of a high-sugar and high-fat diet combined with the intraperitoneal injection of streptozotocin to explore the hypoglycemic effect of polysaccharides from Physalis alkekengi L. After six weeks of treatment, the mice in the high-dosage group (800 mg/kg bw) displayed significant improvements in terms of fasting blood glucose concentration, glucose tolerance, serum insulin level, insulin resistance, and weight loss (p < 0.05). The polysaccharides also significantly regulated blood lipid levels by reducing the serum contents of total triglycerides, total cholesterol, and low-density lipoproteins and increasing the serum content of high-density lipoproteins (p < 0.05). Furthermore, they significantly enhanced the hepatic and pancreatic antioxidant capacities, as determined by measuring the catalase and superoxide dismutase activities and the total antioxidant capacity (p < 0.05). The results of immunohistochemistry showed that the P. alkekengi polysaccharides can increase the expression of GPR43 in mice colon epithelial cells, thereby promoting the secretion of glucagon-like peptide-1. In summary, P. alkekengi polysaccharides can help to regulate blood glucose levels in T2DM mice and alleviate the decline in the antioxidant capacities of the liver and pancreas, thus protecting these organs from damage.
Collapse
Affiliation(s)
- Yun Zhang
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Minghao Wang
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Peng Li
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Ge Lv
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Jing Yao
- College of Food Engineering, Heilongjiang East University, Harbin 150066, China; (M.W.); (P.L.); (G.L.); (J.Y.)
| | - Lin Zhao
- Quality & Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| |
Collapse
|
5
|
Zhou F, Cai B, Ruan S, Wei Q. Purification, characterization, and antioxidant ability of polysaccharides from Phascolosoma esculentas. Food Sci Nutr 2024; 12:2799-2808. [PMID: 38628168 PMCID: PMC11016387 DOI: 10.1002/fsn3.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 04/19/2024] Open
Abstract
The polysaccharide was extracted from Phascolosoma esculenta (PEP). Two purified polysaccharides (PEP-1 and PEP-2) were obtained by the column chromatography separation method. The molecular weights of PEP-1 and PEP-2 were 33.6 and 5.7 × 103 kDa, respectively. PEP-1 and PEP-2 had the same monosaccharides composition, but their molar ratios varied. The in vitro antioxidant activity of the PEP, PEP-1, and PEP-2 were investigated by scavenging free radicals like 3-ethylbenzoth-iazoline-6-sulfonic acid (ABTS), •OH, and 2,2-diphenyl-1-picrylhydrazyl (DPPH). Additionally, the in vivo antioxidant activity of PEP-1 was examined using the Caenorhabditis elegans (C. elegans) organism. Results showed that PEP-1 was much more effective than PEP and PEP-2 at scavenging DPPH, •OH, and ABTS radicals. Additionally, PEP-1 strengthened C. elegans' ability to endure oxidative stress. PEP-1 possessed the in vivo antioxidant capacity, including the reactive oxygen species (ROS) content reducing, and protective effect on antioxidant enzyme activities in C. elegans. In summary, PEP, PEP-1, and PEP-2 might have the potential to develop as functional foods and clinical medications.
Collapse
Affiliation(s)
- Fengfang Zhou
- College of Life SciencesNingde Normal UniversityNingdeChina
- Engineering Research Center of Mindong Aquatic Product Deep ProcessingFujian Province UniversityNingdeChina
- State Oceanic Administration Hercynian Special Biological Germplasm Resources and Biological Product Development Public Service PlatformNingdeChina
| | - Binxin Cai
- College of Life SciencesNingde Normal UniversityNingdeChina
- Engineering Research Center of Mindong Aquatic Product Deep ProcessingFujian Province UniversityNingdeChina
- State Oceanic Administration Hercynian Special Biological Germplasm Resources and Biological Product Development Public Service PlatformNingdeChina
| | - Shaojiang Ruan
- College of Life SciencesNingde Normal UniversityNingdeChina
- Engineering Research Center of Mindong Aquatic Product Deep ProcessingFujian Province UniversityNingdeChina
- State Oceanic Administration Hercynian Special Biological Germplasm Resources and Biological Product Development Public Service PlatformNingdeChina
| | - Qi Wei
- College of Life SciencesNingde Normal UniversityNingdeChina
- Engineering Research Center of Mindong Aquatic Product Deep ProcessingFujian Province UniversityNingdeChina
- State Oceanic Administration Hercynian Special Biological Germplasm Resources and Biological Product Development Public Service PlatformNingdeChina
| |
Collapse
|
6
|
Iliescu DG, Petrita R, Teodorescu C, Olaru RA, Alexa AA, Petre I. Real‑world performance and safety of vaginal ovules in reducing the vaginal symptoms associated with vulvovaginal atrophy and postmenopausal sexual dysfunction. Biomed Rep 2024; 20:35. [PMID: 38312435 PMCID: PMC10831781 DOI: 10.3892/br.2024.1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/11/2023] [Indexed: 02/06/2024] Open
Abstract
Decreasing estrogen levels during the postmenopausal period results in tissue atrophy and physiological changes, such as thinning of the vaginal epithelium, prolapse and decreased pelvic floor strength and control. Sexual dysfunction associated with vaginal dryness occurs in postmenopausal patients. The present study (trial no. NCT05654610) was designed as an observational, multicenter, real-world clinical investigation to evaluate the performance and safety of the medical device Halova® ovules in decreasing vaginal symptoms associated with vulvovaginal atrophy and sexual dysfunction. A total of 249 female participants were treated with Halova ovules, both in monotherapy and in combination with vaginal lubricants. The primary objective was to evaluate the tolerability of Halova ovules in the management of symptoms associated with perimenopause or genitourinary syndrome of menopause. The evolution of clinical manifestations such as vaginal dryness, dysuria, dyspareunia and endometrial thickness was defined a secondary objective. Halova ovules were rated with 'excellent' clinical performance by 92.74% of participants as a standalone treatment and 95.71% of the study participants when used in association with vaginal lubricants. Sexual dysfunction-associated parameters, such as vaginal dryness and dyspareunia, were reduced by similar percentages in each arm, 82% (monotherapy) and 80% (polytherapy) for vaginal dryness and 72% in monotherapy vs. 48% polytherapy reducing dyspareunia. No adverse reactions associated with treatment with Halova were reported. The medical device demonstrated anti-atrophic activity in the genitourinary tract, resulting in significantly improved symptoms associated with normal sexual functioning.
Collapse
Affiliation(s)
- Dominic-Gabriel Iliescu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Ramona Petrita
- Biometrics Unit, MDX Research, 300633 Timisoara, Romania
| | - Cristina Teodorescu
- Department of Obstetrics and Gynecology, ‘Nicolae Malaxa’ Clinical Hospital, 022441 Bucharest, Romania
| | - Raluca Alexandra Olaru
- Department of Obstetrics and Gynecology III, National Institute Alessandrescu Rusescu, Clinic of Obstetrics and Gynecology ‘Polizu’, 011061 Bucharest, Romania
| | - Andreea Anda Alexa
- Department of Biochemistry IV, University of Medicine and Pharmacy Victor Babes, 300041 Timisoara, Romania
| | - Izabella Petre
- Department of Obstetrics and Gynecology XII, University of Medicine and Pharmacy Victor Babes, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Wang J, Zhang K, Zhang Y, Ge S, Zhang S. Defense against oxidative stress in Caenorhabditis elegans by dark tea. Front Vet Sci 2024; 10:1342747. [PMID: 38249557 PMCID: PMC10796627 DOI: 10.3389/fvets.2023.1342747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Dark tea, rich in nutricines including tea polyphenols and free amino acids, is a kind of post-fermented tea. The potential application of nutricines against oxidative damage and senescence, which drives animal health maintenance and disease prevention, has attracted considerable interest. In this study, the effect of dark tea and its effects on longevity and defense against oxidative stress was investigated in the Caenorhabditis elegans (C. elegans) model. Under normal conditions, dark tea extended the lifespan without significant impairment of propagation. It also improved the motility, alleviated the fat accumulation and apoptosis. Additionally, orally administered dark tea could significantly decrease the level of reactive oxygen species (ROS) and resulted in a superior lifespan in H2O2-induced oxidative stressed C. elegans. In antioxidant assays in vitro, dark tea was found to be rich in strong hydroxyl, DPPH and ABTS+ free radical scavenging capacity. Interestingly, mRNA sequence analyses further revealed that dark tea may catalyze intracellular relevant oxidative substrates and synthesize antioxidants through synthetic and metabolic pathways. These results suggest that dark tea is worth further exploration as a potential dietary supplement for the maintenance of animal health and the prevention of related diseases.
Collapse
Affiliation(s)
- Jianxiu Wang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Kaiheng Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yaya Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Shumin Ge
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Shuhua Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
8
|
Wang S, Lin D, Cao J, Wang L. APPA Increases Lifespan and Stress Resistance via Lipid Metabolism and Insulin/IGF-1 Signal Pathway in Caenorhabditis elegans. Int J Mol Sci 2023; 24:13682. [PMID: 37761985 PMCID: PMC10531162 DOI: 10.3390/ijms241813682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Animal studies have proven that 1-acetyl-5-phenyl-1H-pyrrol-3-yl acetate (APPA) is a powerful antioxidant as a novel aldose reductase inhibitor independently synthesized by our laboratory; however, there is no current information on APPA's anti-aging mechanism. Therefore, this study examined the impact and mechanism of APPA's anti-aging and anti-oxidation capacity using the Caenorhabditis elegans model. The results demonstrated that APPA increases C. elegans' longevity without affecting the typical metabolism of Escherichia coli OP50 (OP50). APPA also had a non-toxic effect on C. elegans, increased locomotor ability, decreased the levels of reactive oxygen species, lipofuscin, and fat, and increased anti-stress capacity. QRT-PCR analysis further revealed that APPA upregulated the expression of antioxidant genes, including sod-3, gst-4, and hsp-16.2, and the critical downstream transcription factors, daf-16, skn-1, and hsf-1 of the insulin/insulin-like growth factor (IGF) receptor, daf-2. In addition, fat-6 and nhr-80 were upregulated. However, the APPA's life-prolonging effects were absent on the daf-2, daf-16, skn-1, and hsf-1 mutants implying that the APPA's life-prolonging mechanism depends on the insulin/IGF-1 signaling system. The transcriptome sequencing also revealed that the mitochondrial route was also strongly associated with the APPA life extension, consistent with mev-1 and isp-1 mutant life assays. These findings aid in the investigation of APPA's longevity extension mechanism.
Collapse
Affiliation(s)
| | | | | | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (D.L.); (J.C.)
| |
Collapse
|