1
|
Wang Y, Lei A, Zhan Z, Sun X, Zhang F. Effect of transglutaminase treatment on the physicochemical properties and structural characteristics of soy protein isolate/konjac glucomannan complex. Food Chem 2024; 470:142642. [PMID: 39742611 DOI: 10.1016/j.foodchem.2024.142642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/03/2025]
Abstract
In this study, the effects of transglutaminase on the structural and physicochemical properties of soy protein isolate/konjac glucomannan complex were investigated. Additionally, the complex was treated with different transglutaminase additions, cross-linking temperatures, and cross-linking pH and compared with a control without transglutaminase to elucidate the effect of transglutaminase on the internal interactions within the complex. The results demonstrated that transglutaminase treatment significantly enhanced the water-holding and oil-binding capacities by 34.62 % and 49.28 %, respectively, along with the emulsifying properties. Furthermore, transglutaminase treatment significantly enhanced the UV absorption intensity by 36.89 % and strengthened the intermolecular interactions. The relative crystallinity and ΔH were elevated by 15.08 % and 34.39 %, respectively, which significantly enhanced the thermal stability of the complex. Overall, the transglutaminase-treated complex displayed improved physicochemical properties, with a more organized, uniform, and denser internal structure. These findings offer valuable insights into developing novel plant-based fat mimetics.
Collapse
Affiliation(s)
- Ya Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ailin Lei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ziyi Zhan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaohua Sun
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
2
|
Ge J, Du Y, Wang Q, Xu X, Li J, Tao J, Gao F, Yang P, Feng B, Gao J. Effects of nitrogen fertilizer on the physicochemical, structural, functional, thermal, and rheological properties of mung bean (Vigna radiata) protein. Int J Biol Macromol 2024; 260:129616. [PMID: 38266839 DOI: 10.1016/j.ijbiomac.2024.129616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Nitrogen fertilizer can affect the seed quality of mung bean. However, the effects of nitrogen fertilizer on the properties of mung bean protein (MBP) remain unclear. We investigated the effects of four nitrogen fertilization levels on the physicochemical, structural, functional, thermal, and rheological properties of MBP. The results showed that the amino acid and protein contents of mung bean flour were maximized under 90 kg ha-1 of applied nitrogen treatment. Nitrogen fertilization can alter the secondary and tertiary structure of MBP. The main manifestations are an increase in the proportion of β-sheet, the exposure of more chromophores and hydrophobic groups, and the formation of loose porous aggregates. These changes improved the solubility, oil absorption capacity, emulsion activity, and foaming stability of MBP. Meanwhile, Thermodynamic and rheological analyses showed that the thermal stability, apparent viscosity, and gel elasticity of MBP were all increased under nitrogen fertilizer treatment. Correlation analysis showed that protein properties are closely related to changes in structure. In conclusion, nitrogen fertilization can improve the protein properties of MBP by modulating the structure of protein molecules. This study provides a theoretical basis for the optimization of mung bean cultivation and the further development of high-quality mung bean protein foods.
Collapse
Affiliation(s)
- Jiahao Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yarong Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoying Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jincai Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Feng Gao
- Agricultural Technology Extension Center of Hengshan District, Hengshan, Shaanxi Province 719199, China
| | - Pu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
3
|
Chu H, Liu W, Zhao C, Yin T, Shi J, Zhang W. Glycated Casein by TGase-Type Exerts Protection Potential against DSS-Induced Colitis via Inhibiting TLR4/NF-κB Signaling Pathways in C57BL/6J Mice. Foods 2023; 12:3431. [PMID: 37761139 PMCID: PMC10528845 DOI: 10.3390/foods12183431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Glycation by transglutaminase (TGase)-type could effectively improve the structure and functional properties of proteins. However, the influence on intestinal inflammation or the underlying mechanisms has not been investigated. The goal of this research was to compare the bioactivities between glycated casein generated from the TGase-catalyzed reaction and oligochitosan as well as casein using a mouse model of dextran sulfate sodium (DSS)-induced intestinal inflammation to examine the protective effects and the underlying mechanism of glycated casein on intestinal inflammation. Eight groups of C57BL/6 mice were randomly assigned in this study: Control group: standard diet for 35 days; Model group: standard diet for 28 days and then colitis induction; Pretreated groups: different levels (200, 400, 800 mg/kg BW) of casein or glycated casein for 28 days before colitis induction. The mice were drinking water containing a 3% DSS solution for seven days of mice to cause colitis. The results indicated that glycated casein and casein at 200-800 mg/kg BW all relieved DSS-induced weight loss, reduced disease activity index (DAI) score, alleviated colon length shortening, weakened the destruction of colonic mucosal structure, decreased serum LPS, and MPO, IL-1β, IL-6 and TNF-α levels in serum and colon, as well as regulated the expression of proteins involved in the TLR4/NF-κB signaling pathway in a concentration-dependent manner. Glycated caseinate showed a better protective effect against DSS-induced colitis than casein, highlighting that the TGase-type glycation of proteins as a potential functional food ingredient might be a helpful method for gut health.
Collapse
Affiliation(s)
- Hui Chu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Weiling Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Cong Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Tong Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jia Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|