1
|
Liu P, Zhang Z, Wu D, Li W, Chen W, Yang Y. The prospect of mushroom as an alterative protein: From acquisition routes to nutritional quality, biological activity, application and beyond. Food Chem 2025; 469:142600. [PMID: 39733565 DOI: 10.1016/j.foodchem.2024.142600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
There is a need for new protein sources to sustainably feed the world. Mushroom proteins are regarded as a future protein alternative considering their low cost, high nutritional quality, and excellent digestibility, have attracted increasing attention. Proteins with multiple structural characteristics endow mushroom with various bioactivities, which has also broadened application of mushroom in nutrition, food fields, as well as in emerging industries. Therefore, the present review narrates the recent developments in nutritional quality of mushroom proteins, while paying considerable attention to cultivation technologies and preparation strategies of mushroom proteins. Moreover, the types, properties and biological benefits of mushroom proteins were summarized, herein the latest research on applications of mushroom or their proteins was highlighted. Eventually, the challenges confronting their widespread utility, despite their high nutritional content were discussed. This review would provide a new appreciation for the future use of mushroom proteins.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R. China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
2
|
Cerrone F, O'Connor KE. Cultivation of filamentous fungi in airlift bioreactors: advantages and disadvantages. Appl Microbiol Biotechnol 2025; 109:41. [PMID: 39928147 PMCID: PMC11811475 DOI: 10.1007/s00253-025-13422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Filamentous fungi or mycelia are a valuable bioresource to produce several biomolecules and enzymes, especially because of their biodegradation potential and for their key role of enablers of a circular bioeconomy. Filamentous fungi can be grown in submerged cultivation to maximise the volumetric productivity of the bioprocess, instead of using the more established and time-consuming solid-state cultivation. Multicellular mycelia are sensitive to shear stresses induced by mechanical agitation, and this aspect greatly affects their morphology in submerged cultivation (pelletisation) and the connected volumetric productivity. An efficient compromise is the growth of filamentous fungi in airlift bioreactors (ALR) where the volumetric oxygen transfer (KLa) is optimal, but the shear stress is reduced. In this review, we critically analysed the advantages and disadvantages of ALR-based cultivation of filamentous fungi, comparing these bioreactors also with stirred tank reactors and bubble column reactors; we focused on scientific literature that highlights findings for the cultivation of filamentous fungi for both the production of enzymes and the production of myco-biomass in ALR; we included studies for the control of the pelletisation of the fungal biomass in batch and semi-continuous cultivation, highlighting the interlinked hydrodynamics; finally, we included studies regarding the modifications of ALR in order to enhance filamentous fungi production. KEY POINTS: • ALR are efficient for batch and prolonged continuous cultivation of filamentous fungi. • ALR show both optimal gas hold-up and KLa with an airflow that has high superficial velocity and critical bubble diameter (1-6 mm). • Suspended mycelia aggregates (pellet) maintain a fluidised motion in ALR if their size/density can be controlled.
Collapse
Affiliation(s)
- Federico Cerrone
- School of Biotechnology, Dublin City University, Glasnevin Campus Dublin, Dublin, Ireland.
- BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science (Science East) University College Dublin, Belfield Campus Dublin, Dublin, Ireland.
| | - Kevin E O'Connor
- BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science (Science East) University College Dublin, Belfield Campus Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield Campus Dublin, Dublin, Ireland
- Bioplastech Ltd NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Maseko KH, Regnier T, Bartels P, Meiring B. Mushroom mycelia as sustainable alternative proteins for the production of hybrid cell-cultured meat: A review. J Food Sci 2025; 90:e70060. [PMID: 39921300 PMCID: PMC11806284 DOI: 10.1111/1750-3841.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
World agriculture endures an immense challenge in feeding the world's growing population in the face of several productivity and environmental threats. Yet, the demand for alternative protein sources is rapidly increasing as a result of population growth, including health and ethical concerns associated with meat consumption. Edible mushroom species contain a high composition of protein, fiber, vitamins, and a variety of minerals, and are regarded as sufficient sources of food products. Pleurotus genus is one of the most extensively studied edible fungi due to its exceptional physical, chemical, biological, and enzymatic properties. The assessment on the effects of the in vitro culture media composition, including carbon and nitrogen sources, pH, and temperature are all necessary for enhancing mushroom mycelial biomass growth and production. Mycoprotein as a fungal-derived protein source has been identified as a more sustainable and healthier meat substitute due to its fibrous structure, high nutritional value, and unique functional profile. Its distinctive production method results in a much lower carbon and water footprint than traditional farming methods. A systemic transition from traditional agriculture to more sustainable cellular agriculture using cell-cultivation methods to create animal products has been proposed and initiated. This review can provide an overview on the various processes involved in the production and usage of mycelium as an alternative protein source in hybrid cell-cultured meat production.
Collapse
Affiliation(s)
- Kayise Hypercia Maseko
- Department of Biotechnology and Food TechnologyTshwane University of TechnologyPretoriaRepublic of South Africa
| | - Thierry Regnier
- Department of Biotechnology and Food TechnologyTshwane University of TechnologyPretoriaRepublic of South Africa
| | | | - Belinda Meiring
- Department of Biotechnology and Food TechnologyTshwane University of TechnologyPretoriaRepublic of South Africa
| |
Collapse
|
4
|
Landeta-Salgado C, Munizaga J, González-Troncoso MP, Daza-Sanchez A, Martínez I, Lienqueo ME. In Vitro Bioaccessibility of Edible Seaweed Proteins from the Chilean Coast and Proteins from the Novel Seaweed-Derived Mycoprotein. Molecules 2025; 30:165. [PMID: 39795221 PMCID: PMC11722519 DOI: 10.3390/molecules30010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Seaweed biomass is globally underutilized as a source of proteins despite its nutritional potential, with much of its use focused on hydrocolloid extraction. This study evaluated the nutritional quality and digestibility of protein and amino acids from two brown seaweeds (Durvillaea spp. and Macrocystis pyrifera), one green seaweed (Ulva spp.), and a novel mycoprotein derived from Durvillaea spp. through fungal fermentation. Using an in vitro gastrointestinal digestion Megazyme assay kit, protein digestibility-corrected amino acid scores (PDCAASs) and digestible indispensable amino acid scores (DIASSs) were determined. Compared with seaweeds, seaweed-derived mycoprotein presented significantly greater protein contents (~33%) and amino acid profiles (2.2 times greater than those of Durvillaea spp. and M. pyrifera), with greater digestibility (~100%) than seaweeds (<60%). The PDCAAS values were 0.37, 0.41, 0.53, and 0.89 for Ulva spp., Macrocystis pyrifera, Durvillaea spp., and mycoproteins, respectively. The DIASSs highlighted the superior nutritional quality of the mycoprotein, particularly for lysine (0.59) and histidine (0.67). SDS-PAGE revealed soluble peptides (<25 kDa) in Durvillaea spp., Macrocystis pyrifera, and mycoproteins, whereas Ulva spp. proteins exhibited limited solubility due to structural aggregation. These findings highlight the need to characterize the nutritional properties of edible seaweeds in Chile further and emphasize the importance of optimized processing techniques, such as fermentation or bioconversion, to improve the nutritional potential of seaweeds and develop high-quality food ingredients for diverse applications.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago 8330111, Chile; (J.M.); (M.P.G.-T.); (A.D.-S.); (I.M.); (M.E.L.)
- Faculty of Veterinary Medicine and Agronomy, Institute of Natural Sciences, University of the Americas (UDLA), Santiago 7500975, Chile
| | - Javiera Munizaga
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago 8330111, Chile; (J.M.); (M.P.G.-T.); (A.D.-S.); (I.M.); (M.E.L.)
| | - María Paz González-Troncoso
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago 8330111, Chile; (J.M.); (M.P.G.-T.); (A.D.-S.); (I.M.); (M.E.L.)
| | - Anamaría Daza-Sanchez
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago 8330111, Chile; (J.M.); (M.P.G.-T.); (A.D.-S.); (I.M.); (M.E.L.)
| | - Irene Martínez
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago 8330111, Chile; (J.M.); (M.P.G.-T.); (A.D.-S.); (I.M.); (M.E.L.)
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago 8330111, Chile; (J.M.); (M.P.G.-T.); (A.D.-S.); (I.M.); (M.E.L.)
| |
Collapse
|
5
|
Santhapur R, Jayakumar D, McClements DJ. Formation and Characterization of Mycelium-Potato Protein Hybrid Materials for Application in Meat Analogs or Substitutes. Foods 2024; 13:4109. [PMID: 39767051 PMCID: PMC11675917 DOI: 10.3390/foods13244109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
There is increasing interest in the development of meat analogs due to growing concerns about the environmental, ethical, and health impacts of livestock production and consumption. Among non-meat protein sources, mycoproteins derived from fungal fermentation are emerging as promising meat alternatives because of their natural fibrous structure, high nutritional content, and low environmental impact. However, their poor gelling properties limit their application in creating meat analogs. This study investigated the potential of creating meat analogs by combining mycoprotein (MCP), a mycelium-based protein, with potato protein (PP), a plant-based protein, to create hybrid products with meat-like structures and textures. The PP-MCP composites were evaluated for their physicochemical, rheological, textural, and microstructural properties using electrophoresis, differential scanning calorimetry, dynamic shear rheology, texture profile analysis, confocal fluorescence microscopy, and scanning electron microscopy analyses. The PP-MCP hybrid gels were stronger and had more fibrous structures than simple PP gels, which was mainly attributed to the presence of hyphae fibers in mycelia. Dynamic shear rheology showed that the PP-MCP hybrids formed irreversible heat-set gels with a setting temperature of around 70 °C during heating, which was attributed to the unfolding and aggregation of the potato proteins. Confocal and electron microscopy analyses showed that the hybrid gels contained a network of mycelia fibers embedded within a potato protein matrix. The hardness of the PP-MCP composites could be increased by raising the potato protein content. These findings suggest that PP-MCP composites may be useful for the development of meat analogs with more meat-like structures and textures.
Collapse
Affiliation(s)
| | | | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (R.S.); (D.J.)
| |
Collapse
|
6
|
Todorov SK, Tomasikova F, Hansen M, Shetty R, Jansen CL, Jacobsen C, Hobley TJ, Lametsch R, Bang-Berthelsen CH. Using pre-fermented sugar beet pulp as a growth medium to produce Pleurotus ostreatus mycelium for meat alternatives. Int J Food Microbiol 2024; 425:110872. [PMID: 39163813 DOI: 10.1016/j.ijfoodmicro.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
This study aimed to determine the compatibility of pre-fermented sugar beet pulp to support the growth of Pleurotus ostreatus mycelium in submerged fermentation. The goal was to create a meat alternative based on mycelial-fermented pulp. It was further explored whether pre-fermentation with lactic acid bacteria (LAB) on the pulp increased meat-like properties, such as aroma, springiness, and hardness, in the final product. Three strains were selected from a high throughput screening of 105 plant-derived LAB based on their acidification and metabolite production in the pulp. Two homofermentative strains (Lactococcus lactis) and one heterofermentative strain (Levilactobacillus brevis) were selected based on their low ethanol production, high lactic acid production, and overall acidification of the pulp. Mycelium of P. ostreatus was grown in submerged fermentations on the pre-fermented pulp, and the biomass was removed by centrifugation. The fungal strain consumed all available sugars and acids and released arabinose to the media. Volatiles were detected using GC-MS, and a large increase in concentrations of hexanal, 1-octen-3-ol, and 2-octenal was measured. Concentration of 1-octen-3-ol was lower in the pre-fermented samples vs. the non-pre-fermented. LC-MS amino acid analysis showed the presence of all essential amino acids on day 0 and 7 of fermentation. The highest concentration of amino acids was for glutamic acid/glutamine and aspartic acid/asparagine. A decrease in all amino acids after 7 days of fungal fermentation was measured for all fermentations. The decrease was more significant for pre-fermented samples. This was also confirmed through a total protein determination, except for samples pre-fermented with Lactococcus lactis strain NFICC142 which increased in total protein content after fungal fermentation. The protein digestibility increased after fungal fermentation, and the highest increase was seen for non-pre-fermented samples. The springiness of the fermented product indicated similarities to meat alternatives, while the hardness was much lower than other meat alternatives. The results indicate that dried sugar beet pulp can be used for submerged cultivation of P. ostreatus, but that pre-fermentation does not improve the physical or nutritional properties of the end product significantly, except for an increased protein content for NFICC142 pre-fermented media. This is the first known attempt to use LAB and P. ostreatus in mixed fermentation to produce fungal mycelium, as well as the first attempt at using SBP in a liquid fermentation for mycelial production of P. ostreatus.
Collapse
Affiliation(s)
| | - Frantiska Tomasikova
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Mikkel Hansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Radhakrishna Shetty
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Celia L Jansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Timothy John Hobley
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - René Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark.
| | | |
Collapse
|
7
|
Furlan O, de Oliveira NS, de Paula RC, Rosa RT, Michelotto PV, Weber SH, Bianchini LF, Rosa EAR. Pilot scale production of high-content mycoprotein using Rhizopus microsporus var. oligosporus by submerged fermentation and agro-industrial by-products. BIORESOURCE TECHNOLOGY 2024; 413:131515. [PMID: 39366513 DOI: 10.1016/j.biortech.2024.131515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
While mycoprotein has gained traction as a human food source, its potential as a nutrient for animals remains largely unexplored. The mycoprotein-producing Rhizopus microsporus var. oligosporus, a fungus traditionally used for human food in Indonesia, is promising. It could revolutionise animal nutrition once it is Generally Recognized as Safe (GRAS) and is a biosafety level 1 (BSL1) organism. To enhance sustainably, we propose using sugar cane molasses (SM) and corn steep liquor (CSL) as nutrient sources. Also, we investigated the growth of R. microsporus var. oligosporus in five 14 L external-loop airlift bioreactors using CSL as the sole nutrient source. After 96 h of fermentation, at 25 °C and 0.5 vvm, the mycelium produced had an average biomass yield of 38.34 g L-1, with 70.18 % (m v-1) crude protein (mycoprotein). This bioprocess, which is scalable and economically viable, produces high amounts of mycoprotein for animal feed using CSL, a cost-effective agro-industrial by-product, providing a practical solution to the growing demand for animal protein.
Collapse
Affiliation(s)
- Orozimbo Furlan
- Graduate Program on Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - Nicoly Subtil de Oliveira
- Graduate Program on Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - Rafaela Caldas de Paula
- Graduate Program on Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - Rosimeire Takaki Rosa
- Xenobiotics Research Unit, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - Pedro Vicente Michelotto
- Graduate Program on Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - Saulo Henrique Weber
- Graduate Program on Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - Luiz Fernando Bianchini
- Xenobiotics Research Unit, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil
| | - Edvaldo Antonio Ribeiro Rosa
- Graduate Program on Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil; Xenobiotics Research Unit, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Paraná, Brazil.
| |
Collapse
|
8
|
Shen K, Liu Y, Liu L, Khan AW, Normakhamatov N, Wang Z. Characterization, Optimization, and Scaling-up of Submerged Inonotus hispidus Mycelial Fermentation for Enhanced Biomass and Polysaccharide Production. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05101-3. [PMID: 39585555 DOI: 10.1007/s12010-024-05101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
This study was to establish an efficient strategy based on inoculum-morphology control for the submerged mycelial fermentation of an edible and medicinal fungus, Inonotus hispidus. Two major morphological forms of the mycelial inoculum were compared, dispersed mycelial fragments versus aggregated mycelial clumps. The dispersed one was more favorable for the fermentation, starting with a shorter lag period and attaining a higher biomass yield and more uniform mycelium pellets in shake flasks. The mycelial pellets taken from the shake flask culture on day 6 were fragmented at 26,000 rpm in a homogenizer, and a shear time of 3 min provided the optimal inoculum. The inoculum and culture conditions were further verified in 5-L stirred tank fermenters and then the fermentation was scaled-up in a 100-L stirred tank. With the optimized inoculum and process conditions plus a fed-batch operation, much higher productivities, including 22.23 g/L biomass, 3.31 g/L EPS, and 5.21 g/L IPS, were achieved in the 100-L fermenter than in the flask culture. A composition analysis showed that the I. hispidus mycelium produced by the fermentation was rich in protein, dietary fiber, and polysaccharides which may be beneficial to health. Overall, the results have shown that the inoculum characteristics including age, morphology, and state of aggregation have significant impact on the productivity of mycelial biomass and polysaccharides in a submerged mycelial fermentation of the I. hispidus fungus.
Collapse
Affiliation(s)
- Ke Shen
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuanshuai Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Liyan Liu
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Abdul Waheed Khan
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Tashkent, 100015, Uzbekistan
| | - Zhaomei Wang
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China.
- Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China.
| |
Collapse
|
9
|
Rajput SD, Pandey N, Sahu K. A comprehensive report on valorization of waste to single cell protein: strategies, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26378-26414. [PMID: 38536571 DOI: 10.1007/s11356-024-33004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
The food insecurity due to a vertical increase in the global population urgently demands substantial advancements in the agricultural sector and to identify sustainable affordable sources of nutrition, particularly proteins. Single-cell protein (SCP) has been revealed as the dried biomass of microorganisms such as algae, yeast, and bacteria cultivated in a controlled environment. Production of SCP is a promising alternative to conventional protein sources like soy and meat, due to quicker production, minimal land requirement, and flexibility to various climatic conditions. In addition to protein production, it also contributes to waste management by converting it into food and feed for both human and animal consumption. This article provides an overview of SCP production, including its benefits, safety, acceptability, and cost, as well as limitations that constrains its maximum use. Furthermore, this review criticizes the downstream processing of SCP, encompassing cell wall disruption, removal of nucleic acid, harvesting of biomass, drying, packaging, storage, and transportation. The potential applications of SCP, such as in food and feed as well as in the production of bioplastics, emulsifiers, and as flavoring agents for baked food, soup, and salad, are also discussed.
Collapse
Affiliation(s)
- Sharda Devi Rajput
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Neha Pandey
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Keshavkant Sahu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India.
| |
Collapse
|
10
|
Whabi V, Yu B, Xu J. From Nature to Design: Tailoring Pure Mycelial Materials for the Needs of Tomorrow. J Fungi (Basel) 2024; 10:183. [PMID: 38535193 PMCID: PMC10970937 DOI: 10.3390/jof10030183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 11/11/2024] Open
Abstract
Modern efforts to influence materials science with principles of biology have allowed fungal mycelial materials to take a foothold and develop novel solutions for the circular bioeconomy of tomorrow. However, recent studies have shown that the value of tomorrow's green materials is not determined simply by their environmental viability, but rather by their ability to make the polluting materials of today obsolete. With an inherently strong structure of chitin and β-glucan, the ever-adaptable mycelia of fungi can compete at the highest levels with a litany of materials from leather to polyurethane foam to paper to wood. There are significant efforts to optimize pure mycelial materials (PMMs) through the entire process of species and strain selection, mycelial growth, and fabrication. Indeed, the promising investigations of novel species demonstrate how the diversity of fungi can be leveraged to create uniquely specialized materials. This review aims to highlight PMMs' current trajectory, evaluate the successes in technology, and explore how these new materials can help shape a better tomorrow.
Collapse
Affiliation(s)
- Viraj Whabi
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Bosco Yu
- Department of Mechanical Engineering, Engineering Office Wing, University of Victoria, Victoria, BC V8P 3E6, Canada;
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
11
|
Hamza A, Mylarapu A, Krishna KV, Kumar DS. An insight into the nutritional and medicinal value of edible mushrooms: A natural treasury for human health. J Biotechnol 2024; 381:86-99. [PMID: 38181980 DOI: 10.1016/j.jbiotec.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Edible mushrooms have been cherished worldwide because of their nutraceutical and medicinal properties. They are recognized as the new superfood for the future due to their low-calorie content, high-protein content, low lipid levels, low cholesterol levels, and abundance of essential vitamins. The fruiting body of edible mushrooms contains a plethora of primary and secondary metabolites. However, submerged cultivation is a more reliable and controlled way of production of mycelium biomass and many bioactive compounds. Several bioactive metabolites present in mushrooms possess a range of beneficial properties, including antioxidant, antimicrobial, anticancer, antidiabetic, anti-inflammatory, antiviral and anti-COVID-19 activities. Consumers have turned more intrigued in mushroom-containing products as the world needs to diversify its protein sources to meet the growing demand for protein. In this context, mushrooms are viewed as a promising source of bioactive chemicals that can be employed as an alternative to meat products. This review aims to summarise the most recent data regarding the beneficial health effects and the development of mushroom-based food products.
Collapse
Affiliation(s)
- Arman Hamza
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Ankit Mylarapu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - K Vijay Krishna
- Department of Computer Science, Lovely Professional University, Phagwara, Punjab, India
| | - Devarai Santhosh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
12
|
Krupodorova T, Barshteyn V, Tsygankova V, Sevindik M, Blume Y. Strain-specific features of Pleurotus ostreatus growth in vitro and some of its biological activities. BMC Biotechnol 2024; 24:9. [PMID: 38331794 PMCID: PMC10851480 DOI: 10.1186/s12896-024-00834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND The production of Pleurotus ostreatus mycelium as a promising object for use in food and other industries is hampered by a lack of information about the strain-specificity of this fungus mycelium growth and its acquisition of various biological activities. Therefore, this research aimed to investigate mycelial growth of different P. ostreatus strains on varies solid and liquid media as well as to evaluate strains antagonistic, antibacterial, antiradical scavenging activities, and total phenolic content. RESULTS Potato Dextrose Agar medium was suitable for all strains except P. ostreatus strain 2460. The best growth rate of P. ostreatus 2462 strain on solid culture media was 15.0 ± 0.8 mm/day, and mycelia best growth on liquid culture media-36.5 ± 0.2 g/l. P. ostreatus strains 551 and 1685 were more susceptible to positive effect of plant growth regulators Ivin, Methyur and Kamethur. Using of nutrient media based on combination of natural waste (amaranth flour cake and wheat germ, wheat bran, broken vermicelli and crumbs) has been increased the yield of P. ostreatus strains mycelium by 2.2-2.9 times compared to the control. All used P. ostreatus strains displayed strong antagonistic activity in co-cultivation with Aspergillus niger, Candida albicans, Issatchenkia orientalis, Fusarium poae, Microdochium nivale in dual-culture assay. P. ostreatus 2462 EtOAc mycelial extract good inhibited growth of Escherichia coli (17.0 ± 0.9 mm) while P. ostreatus 2460 suppressed Staphylococcus aureus growth (21.5 ± 0.5 mm) by agar well diffusion method. The highest radical scavenging effect displayed both mycelial extracts (EtOH and EtOAc) of P. ostreatus 1685 (61 and 56%) by DPPH assay as well as high phenolic content (7.17 and 6.73 mg GAE/g) by the Folin-Ciocalteu's method. The maximal total phenol content (7.52 mg GAE/g) demonstrated of P. ostreatus 2461 EtOH extract. CONCLUSIONS It is found that the growth, antibacterial, antiradical scavenging activity as well as total phenolic content were dependent on studied P. ostreatus strains in contrast to antagonistic activity. The proposed culture mediums of natural waste could be an alternative to commercial mediums for the production mycelial biomass of P. ostreatus strains.
Collapse
Affiliation(s)
- Tetiana Krupodorova
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho Str. 2a, Kyiv, 04123, Ukraine
| | - Victor Barshteyn
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho Str. 2a, Kyiv, 04123, Ukraine.
| | - Victoria Tsygankova
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Academician Kukhar Str. 1, Kyiv, 02094, Ukraine
| | - Mustafa Sevindik
- Department of Food Processing, Bahçe Vocational School, Osmaniye Korkut Ata University, İslam Ali Farsakoğlu Cad No:66, 80000, Bahçe/Osmaniye, Turkey
| | - Yaroslav Blume
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho Str. 2a, Kyiv, 04123, Ukraine
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho Str. 2a, 04123, Kyiv, Ukraine
| |
Collapse
|
13
|
Kintl A, Vítěz T, Huňady I, Sobotková J, Hammerschmiedt T, Vítězová M, Brtnický M, Holátko J, Elbl J. Effect of Mycotoxins in Silage on Biogas Production. Bioengineering (Basel) 2023; 10:1387. [PMID: 38135978 PMCID: PMC10740816 DOI: 10.3390/bioengineering10121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Mycotoxins can pose a threat to biogas production as they can contaminate the feedstock used in biogas production, such as agricultural crops and other organic materials. This research study evaluated the contents of deoxynivalenol (DON), zearalenone (ZEA), fumonisin (FUM), and aflatoxin (AFL) mycotoxins in maize silage prior to it being processed in a biogas plant and in digestate produced at the end of the anaerobic digestion (AD) process. In the experiment, three samples of silage were collected from one silage warehouse: Variant 1 = low contamination, Variant 2 = medium contamination, and Variant 3 = heavy contamination, which were subjected to investigation. A significantly reduced biogas production was recorded that was proportional to the increasing contamination with molds, which was primarily due to the AD of silage caused by technologically erroneous silage treatment. The AD was connected with changes in silage composition expressed by the values of VS content, sugar content, lactic acid content, acetic acid content, and the ratio of lactic acid content to acetic acid content. The production of biogas and methane decreased with the increasing contents of NDF, ADF, CF, and lignin. The only exception was Variant 2, in which the content of ADF, CF, and lignin was lower (by 8-11%) than that in Variant 1, and only the content of NDF was higher (by 9%) than that in Variant 1. A secondary factor that also correlated with changes in the composition of the substrate was the development of undesirable organisms, which further contributed to its degradation and to the production of mycotoxins. It was also demonstrated in this study that during the AD process, the tested mycotoxins were degraded, and their content was reduced by 27-100%. Only the variant with low mold contamination showed a DON concentration increase of 27.8%.
Collapse
Affiliation(s)
- Antonín Kintl
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic; (A.K.); (I.H.); (J.S.)
| | - Tomáš Vítěz
- Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Igor Huňady
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic; (A.K.); (I.H.); (J.S.)
| | - Julie Sobotková
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic; (A.K.); (I.H.); (J.S.)
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; (T.H.); (M.B.); (J.H.)
| | - Monika Vítězová
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; (T.H.); (M.B.); (J.H.)
| | - Jiří Holátko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; (T.H.); (M.B.); (J.H.)
- Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13 Rapotin, Czech Republic
| | - Jakub Elbl
- Agricultural Research, Ltd., Zahradní 1, 664 41 Troubsko, Czech Republic; (A.K.); (I.H.); (J.S.)
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| |
Collapse
|
14
|
Kachrimanidou V, Papadaki A, Papapostolou H, Alexandri M, Gonou-Zagou Z, Kopsahelis N. Ganoderma lucidum Mycelia Mass and Bioactive Compounds Production through Grape Pomace and Cheese Whey Valorization. Molecules 2023; 28:6331. [PMID: 37687160 PMCID: PMC10489755 DOI: 10.3390/molecules28176331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Numerous compounds obtained from the medicinal mushroom Ganoderma lucidum have evidenced renowned bioactive characteristics. Controlled fermentation to generate fungal mycelia confers several advantages, specifically when the valorization of agro-industrial streams as fermentation feedstocks is included. Submerged fermentation of a newly isolated Greek strain of G. lucidum was performed using conventional synthetic media and, also, grape pomace extract (GPE) and cheese whey permeate (CWP) under static and shaking conditions. Under shaking conditions, maximum biomass with GPE and supplementation with organic nitrogen reached 17.8 g/L. The addition of an elicitor in CWP resulted in a significant improvement in biomass production that exceeded synthetic media. Overall, agitation demonstrated a positive impact on biomass productivity and, therefore, on process optimization. Crude intracellular and extracellular polysaccharides were extracted and evaluated regarding antioxidant activity and polysaccharide and protein content. FTIR analysis confirmed the preliminary chemical characterization of the crude extracts. This study introduces the design of a bioprocessing scenario to utilize food industry by-products as onset feedstocks for fungal bioconversions to obtain potential bioactive molecules within the concept of bioeconomy.
Collapse
Affiliation(s)
- Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Zacharoula Gonou-Zagou
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| |
Collapse
|