1
|
Dhabal S, Chakrabarty AK, Banerjee D, Katiyar CK, Rai RK, Dubey SK. Internal transcribed spacer (ITS): The powerful DNA barcode and phylogenetic marker for successful authentication of Withania somnifera. Mol Biol Rep 2024; 52:77. [PMID: 39718626 DOI: 10.1007/s11033-024-10167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Understanding the evolutionary history of plants and accurately identifying biologically important species and their families is crucial for the herbal and Ayurvedic industries. The genetic approach by DNA barcoding plays a pivotal role in accurate species identification, authentication and quality control. Due to various therapeutic properties, Withania somnifera has been used worldwide in traditional systems of medicine for centuries including Ayurveda and Unani. The increasing demand for W. somnifera products has led to concerns regarding the authenticity and quality of commercial herbal preparations. However, adulteration become major trouble for users and industry for safety reasons and authentication of the plant with proper DNA marker is a major concern. METHODOLOGY DNA barcoding techniques and Phylogenetic analysis were employed to authenticate W. somnifera plant species using universal genetic markers. The markers were PCR amplified, sequenced and analyzed using BLAST-based and phylogeny-based identification methods. RESULTS The BLAST result shows the percent identity (PI) of ITS1, ITS2, trnK, atpB, rbcL and matK was 100%, 100%, 100%, 97.59%, 100 and 99.20% respectively with the NCBI reference sequence. However, ITS1 and ITS2 show the maximum sequence similarity with W. somnifera of NCBI data. Phylogenetic analysis using NCBI data further supports the role of ITS in the discrimination of W. somnifera from closely related species. CONCLUSION Therefore, the ITS gene may be considered promising a candidate for DNA barcoding for discrimination of W. somnifera from other species, its authentication and quality control.
Collapse
Affiliation(s)
- Sukhamoy Dhabal
- R&D Healthcare Division, Emami Limited, 13 B.T Road, Belgharia, Kolkata, West Bengal, 700056, India
| | - Anirban Kr Chakrabarty
- R&D Healthcare Division, Emami Limited, 13 B.T Road, Belgharia, Kolkata, West Bengal, 700056, India
| | - Dipankar Banerjee
- R&D Healthcare Division, Emami Limited, 13 B.T Road, Belgharia, Kolkata, West Bengal, 700056, India
| | - Chandra Kant Katiyar
- R&D Healthcare Division, Emami Limited, 13 B.T Road, Belgharia, Kolkata, West Bengal, 700056, India
| | - Rajiva Kumar Rai
- R&D Healthcare Division, Emami Limited, 13 B.T Road, Belgharia, Kolkata, West Bengal, 700056, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Limited, 13 B.T Road, Belgharia, Kolkata, West Bengal, 700056, India.
| |
Collapse
|
2
|
Shiraishi CSH, Roriz CL, Carocho M, Prieto MA, Abreu RMV, Barros L, Heleno SA. Blockchain revolution in food supply chains: A positive impact on global food loss and waste. Food Chem 2024; 467:142331. [PMID: 39644658 DOI: 10.1016/j.foodchem.2024.142331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The rising global population has created an urgent need for increased food production. Food loss and waste remain significant challenges throughout the food supply chain, from cultivation to consumption. Blockchain, a decentralized peer-to-peer network that stores information can help making food more traceable, from production to consumption. It can also help enhance food production sustainability, transparency, quality and safety. By tracking all aspects of food it plays a crucial role in reducing food loss and waste. Several organizations that have briefly introduced this technology, along with the Internet of Things, although the real benefit of blockchain is achieved when several players in the food chain adhere to this technology. This review emphasizes how blockchain was adapted to the food chain, its challenges, benefits and limitations, and how some food sectors have used this technology. A brief perspective on how the Internet of Things and Blockchain will evolve in the future.
Collapse
Affiliation(s)
- Carlos S H Shiraishi
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| | - Custódio Lobo Roriz
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| | - Rui M V Abreu
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Nazar N, Saxena A, Sebastian A, Slater A, Sundaresan V, Sgamma T. Integrating DNA Barcoding Within an Orthogonal Approach for Herbal Product Authentication: A Narrative Review. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39532481 DOI: 10.1002/pca.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Existing methods for morphological, organoleptic, and chemical authentication may not adequately ensure the accurate identification of plant species or guarantee safety. Herbal raw material authentication remains a major challenge in herbal medicine. Over the past decade, DNA barcoding, combined with an orthogonal approach integrating various testing methods for quality assurance, has emerged as a new trend in plant authentication. OBJECTIVE The review evaluates DNA barcoding and common alternative testing in plant-related sectors to enhance quality assurance and accurate authentication. METHOD Studies were selected based on their relevance to the identification, quality assurance, and safety of herbal products. Inclusion criteria were peer-reviewed articles, systematic reviews, and relevant case studies from the last two decades focused on DNA barcoding, identification methods, and their applications. Exclusion criteria involved studies lacking empirical data, those not peer-reviewed, or those unrelated to the main focus. This ensured the inclusion of high-quality, pertinent sources while excluding less relevant studies. RESULTS An orthogonal approach refers to the use of multiple, independent methods that provide complementary information for more accurate plant identification and quality assurance. This reduces false positives or negatives by confirming results through different techniques, combining DNA barcoding with morphological analysis or chemical profiling. It enhances confidence in results, particularly in cases of potential adulteration or misidentification of plant materials. CONCLUSION This study highlights the persistent challenges in assuring the quality, purity, and safety of plant materials. Additionally, it stresses the importance of incorporating DNA-based authentication alongside traditional methods, to enhance plant material identification.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Akanksha Saxena
- Plant Biology and Systematics, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anu Sebastian
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Velusamy Sundaresan
- Plant Biology and Systematics, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
4
|
Ma XY, Shao ZL, Yu XP, Wang ZL. A Droplet Digital PCR-Based Approach for Quantitative Analysis of the Adulteration of Atlantic Salmon with Rainbow Trout. Foods 2023; 12:4309. [PMID: 38231780 DOI: 10.3390/foods12234309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Low-cost fish species are often used to adulterate or substitute for Atlantic salmon products, posing a serious threat to market order and public health. Hence, reliable techniques are urgently needed to detect Atlantic salmon adulteration. In this study, a precise method for identifying and quantifying adulterated Atlantic salmon with rainbow trout based on droplet digital PCR (ddPCR) testing was developed. Species-specific primers and probes were designed targeting the single-copy nuclear gene myoglobin of two salmonids. A quantitative formula for calculating the mass fraction of adulterated Atlantic salmon with rainbow trout was established based on a one-step conversion strategy, in which the DNA copy number ratios were directly transformed to meat mass fractions by introducing a fixed constant (the transfer coefficient). The dynamic range of the established ddPCR method was from 1% to 90%, with a limit of detection (LOD) of 0.2% and a limit of quantification (LOQ) of 0.8% for rainbow trout in Atlantic salmon, respectively. The quantification method demonstrated an acceptable level of repeatability and reproducibility, as the values of the relative standard deviation (RSD) for the tested meat mixtures with the known fractions were all less than 5%. Thermal and freezing treatments, as well as adding food additives within the recommended dosage limits, had no significant effect on the quantification accuracy. The method was successfully applied to detect rainbow trout adulteration in commercial raw and processed Atlantic salmon products. In comparison to real-time quantitative PCR (qPCR) testing, the established ddPCR method exhibited a higher level of stability and accuracy. Overall, the ddPCR-based quantitative method exhibited high levels of accuracy, stability, sensitivity, and practicability, suitable for applications in the routine surveillance and quality assurance of salmon products.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhu-Long Shao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|