1
|
Wu Y, Li Y, Liang H, Zhang S, Lin X, Ji C. Enhancing cider quality through co-fermentation with acid protease and esterase-producing Metschnikowia species and Saccharomyces cerevisiae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39271473 DOI: 10.1002/jsfa.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND To date, cider production has primarily relied on Saccharomyces cerevisiae. Introducing novel non-Saccharomyces yeasts can enhance the diversity of cider properties. Among these, the Metschnikowia genus stands out for its ability to produce hydrolytic enzymes that may impact the sensorial and technological properties of cider. This study focused on evaluating the impact of three Metschnikowia species - Metschnikowia koreensis (Mk), M. reukaufii (Mr), and M. pulcherrima (Mp) - which exhibit acid protease and esterase activity, on the quality enhancement of cider. RESULTS The research findings indicate that the overall quality of cider produced through co-fermentation with these species surpassed that of cider fermented with mono-fermentation of S. cerevisiae (Sc). The cider fermented with the Sc + Mk combination exhibited the lowest levels of harsh-tasting malic acid and higher levels of softer lactic acid. Sensory array analysis also demonstrated that the Sc + Mk fermented cider exhibited high sensor response values for compounds contributing to a complex overall olfactory composition and richness. Furthermore, the Sc + Mk fermented cider exhibited the highest total quantity and variety of volatile organic compounds (VOCs). Specifically, the concentrations of phenethyl alcohol, 3-methyl-1-butanol, ethyl octanoate, and decanoic acid were notably elevated in comparison with other groups. CONCLUSION This study illustrates that Metschnikowia species, particularly M. koreensis, show significant potential as starters for cider due to their various technological properties, including acidity modulation, aroma enhancement, and color improvement. The findings of this study provide a foundation for improving cider quality by co-fermenting S. cerevisiae with innovative starter cultures. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuzheng Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yuening Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Huipeng Liang
- Institute of Technology, China Resources Beer (Holdings) Company Limited, Beijing, P.R. China
| | - Sufang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Xinping Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Chaofan Ji
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
2
|
Cao K, Wu J, Wan X, Hou Y, Zhang C, Wang Y, Zhang L, Yang W, He Y, Wu R. Impact of non-Saccharomyces yeasts derived from traditional fermented foods on beer aroma: Analysis based on HS-SPME-GC/MS combined with chemometrics. Food Res Int 2024; 187:114366. [PMID: 38763646 DOI: 10.1016/j.foodres.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
In recent years, numerous studies have demonstrated the significant potential of non-Saccharomyces yeasts in aroma generation during fermentation. In this study, 134 strains of yeast were isolated from traditional fermented foods. Subsequently, through primary and tertiary screening, 28 strains of aroma-producing non-Saccharomyces yeast were selected for beer brewing. Headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and chemometrics were employed to analyze the volatile flavor substances in beer samples fermented using these strains. Chemometric analysis revealed that distinct species of non-Saccharomyces yeast had a unique influence on beer aroma, with strains from the same genus producing more similar flavor profiles. Accordingly, 2,6-nonadienal, 1-pentanol, phenyl ethanol, isoamyl acetate, ethyl caprate, butyl butyrate, ethyl propionate, furfuryl alcohol, phenethyl acetate, ethyl butyrate, ethyl laurate, acetic acid, and 3-methyl-4 heptanone were identified as the key aroma compounds for distinguishing among different non-Saccharomyces yeast species. This work provides useful insights into the aroma-producing characteristics of different non-Saccharomyces yeasts to reference the targeted improvement of beer aroma.
Collapse
Affiliation(s)
- Kaixin Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Xiujuan Wan
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China
| | - Yuchen Hou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Cui Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China
| | - Yusheng Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Liang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenxin Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China.
| |
Collapse
|
3
|
Wei J, Li Y, Liu Y, Liu S, Yang X, Wang X. Process Optimization for Production of Persimmon Wine with Lower Methanol. Foods 2024; 13:748. [PMID: 38472861 DOI: 10.3390/foods13050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Persimmon wine has various nutritional elements and high commercial potential. However, the high content of methanol, which is derived from the fruit's pectin, always hinders persimmon wine production. To reduce the methanol level in the wine, the effects of persimmon cultivar, starter, pectinase, and pretreatment methods were investigated via single-factor and orthogonal experiments. The persimmon cultivar 'MaoKui' was finally used throughout the study owing to its lowest pectin concentration (24.5 g/kg). The best treatment conditions against the persimmon pulp were pectinase (0.04 g/kg) at 30 °C for 4 h, then boiled at 115 °C for 15 min before fermentation started. The optimized fermentation conditions for wine production were pectinase (0.03 g/kg), 250 mg/kg starter (BO213 and SPARK with equal amounts), at 28 °C for 6 d. The obtained wine had 77.7 mg/L methanol and a 68.4% raw juice yield. The fruit wine had 111.4 mg/L methanol and a 90.6 sensory evaluation score. Forty-nine volatile aromas were identified. Ethyl acetate content was the highest, followed by 3-methyl-1-butanol, 2,3-butanediol, and lactate ethyl ester. The persimmon wine had a unique style with transparent color, elegant aroma, and pure taste.
Collapse
Affiliation(s)
- Jinwen Wei
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Yajun Li
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Yijuan Liu
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Silin Liu
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Xiaobing Yang
- College of Enology, Northwest A&F University, Xianyang 712100, China
| | - Xue Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
4
|
Dai Y, Liu S, Yang L, He Y, Guo X, Ma Y, Li S, Huang D. Explorative study for the rapid detection of Fritillaria using gas chromatography-ion mobility spectrometry. Front Nutr 2024; 11:1361668. [PMID: 38379552 PMCID: PMC10877000 DOI: 10.3389/fnut.2024.1361668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Fritillaria is a well-known health-promoting food, but it has many varieties and its market circulation is chaotic. In order to explore the differences in volatile organic compounds (VOCs) among different varieties of Fritillaria and quickly and accurately determine the variety of Fritillaria, this study selected six varieties of Fritillaria and identified and analyzed their volatile components using gas chromatography-ion mobility spectrometry (GC-IMS), establishing the characteristic fingerprints of VOCs in Fritillaria. In all samples, a total of 76 peaks were detected and 67 VOCs were identified. It was found that the composition of VOCs in different varieties of Fritillaria was similar, but the content was different. Combined with chemometric analysis, the differences between VOCs were clearly shown after principal component analysis, cluster analysis, and partial least-squares discriminant analysis. This may provide theoretical guidance for the identification and authenticity determination of different varieties of Fritillaria.
Collapse
Affiliation(s)
- Yuping Dai
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
- Hunan Fenghuang Lanke Traditional Chinese Medicine Co., Ltd., Changsha, China
- Hunan Engineering Technology Research Center for Bioactive Substance Dis-covery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shanshuo Liu
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Li Yang
- Chongqing Healn Drug Sales Co., Ltd., Chongqing, China
| | - Ye He
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Guo
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Yang Ma
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
| | - Shunxiang Li
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Bioactive Substance Dis-covery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| | - Dan Huang
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China
- Hunan Engineering Technology Research Center for Bioactive Substance Dis-covery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China
| |
Collapse
|