1
|
Liu K, Dong H, Peng J, Liao W, Yang X, He Q. Design of equilibrium modified atmosphere packaging for postharvest cabbages preservation based on introducing available active sites into film materials as gas transport channels. Food Res Int 2024; 177:113900. [PMID: 38225143 DOI: 10.1016/j.foodres.2023.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
This work aims to explore an available avenue to design an equilibrium modified atmosphere packaging (EMAP) by the modification of gas permeability of material. In this work, the introduction of available active sites endowed materials with adjustable gas permeability properties. With varying concentrations of the resulting materials with various gas permeability, the CO2 and O2 gas permeability of the blending films were modified at the range of 3.92 ∼ 17.84 barrier and 0.65 ∼ 3.46 barrier, respectively. On this basis, the films were used as EMAP to preserve postharvest cabbages. The results indicated that each EMAP achieved an equilibrium atmosphere containing 6.8 % ∼ 3.8 % CO2 and 2.1 % ∼ 5.2 % O2 within 15 h and maintained it continuously. In these atmosphere, the respiratory rate of the preserved cabbages was significantly inhibited, thereby delaying the deterioration of their storage quality. As the results, sensory scores of the preserved samples were maximally maintained. Declines of color indexes and texture indexes were obviously inhibited. Chemical variations in chlorophyll content, total phenolics content, total flavonoids content, ascorbic acid and nitrite content were significantly suppressed. The overall findings revealed that this method is suitable and promising to develop EMAP for the postharvest vegetables.
Collapse
Affiliation(s)
- Kun Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510640, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Jian Peng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences /Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, Guangdong Province 510640, China
| | - Wenzhen Liao
- School of Public Health / Guangdong Provincial Key Laboratory of Tropical Disease Research / BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510640, China
| | - Xingfen Yang
- School of Public Health / Guangdong Provincial Key Laboratory of Tropical Disease Research / BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510640, China
| | - Qi He
- School of Public Health / Guangdong Provincial Key Laboratory of Tropical Disease Research / BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510640, China; South China Hospital, Shenzhen University, Shenzhen, Guangdong Province 518116, China.
| |
Collapse
|
2
|
Waqas M, Prencipe S, Guarnaccia V, Spadaro D. Molecular Characterization and Pathogenicity of Alternaria spp. Associated with Black Rot of Sweet Cherries in Italy. J Fungi (Basel) 2023; 9:992. [PMID: 37888248 PMCID: PMC10607616 DOI: 10.3390/jof9100992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Black rot is limiting the production of sweet cherries in Italy. Dark brown to black patches and sunken lesions on fruits are the most common symptoms of Alternaria black rot on sweet cherry fruits. We isolated 180 Alternaria spp. from symptomatic cherry fruits 'Kordia', 'Ferrovia', and 'Regina' harvested in Northern Italy, over three years, from 2020 to 2022. The aim was to identify and characterize a selection of forty isolates of Alternaria spp. based on morphology, pathogenicity, and combined analysis of rpb2, Alt-a1, endoPG and OPA10-2. The colonies were dark greyish in the center with white margins. Ellipsoidal or ovoid shaped conidia ranging from 19.8 to 21.7 μm in length were observed under a microscope. Based on the concatenated session of four gene regions, thirty-three out of forty isolates were identified as A. arborescens species complex (AASC), and seven as A. alternata. Pathogenicity was evaluated on healthy 'Regina' sweet cherry fruits. All the tested strains were pathogenic on their host. This study represents the first characterization of Alternaria spp. associated with black rot of cherries in Italy and, to the best of our knowledge, it is also the first report of AASC as an agent of black rot of sweet cherries in Italy.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (M.W.); (S.P.); (V.G.)
| | - Simona Prencipe
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (M.W.); (S.P.); (V.G.)
| | - Vladimiro Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (M.W.); (S.P.); (V.G.)
- AGROINNOVA—Interdepartmental Centre for Innovation in the Agro-environmental Sector, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (M.W.); (S.P.); (V.G.)
- AGROINNOVA—Interdepartmental Centre for Innovation in the Agro-environmental Sector, University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| |
Collapse
|
3
|
Wang J, Wei BC, Wang X, Zhang Y, Gong YJ. Aroma profiles of sweet cherry juice fermented by different lactic acid bacteria determined through integrated analysis of electronic nose and gas chromatography-ion mobility spectrometry. Front Microbiol 2023; 14:1113594. [PMID: 36726371 PMCID: PMC9886094 DOI: 10.3389/fmicb.2023.1113594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Sweet cherries are popular among consumers, with a recent explosion in sweet cherry production in China. However, the fragility of these fruits poses a challenge for expanding production and transport. With the aim of expanding the product categories of sweet cherries that can bypass these challenges, in this study, we prepared sweet cherry juice fermented by three different lactic acid bacteria (LAB; Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus rhamnosus GG), and evaluated the growth, physiochemical, and aroma characteristics. All three strains exhibited excellent growth potential in the sweet cherry juice; however, Lactobacillus acidophilus and Lactobacillus plantarum demonstrated more robust acid production capacity and higher microbial viability than Lactobacillus rhamnosus GG. Lactic acid was the primary fermentation product, and malic acid was significantly metabolized by LAB, indicating a transition in microbial metabolism from using carbohydrates to organic acids. The aroma profile was identified through integrated analysis of electronic nose (E-nose) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) data. A total of 50 volatile compounds characterized the aromatic profiles of the fermented juices by HS-GC-IMS. The flavor of sweet cherry juice changed after LAB fermentation and the fruity odor decreased overall. Lactobacillus acidophilus and Lactobacillus plantarum significantly increased 2-heptanone, ethyl acetate, and acetone contents, bringing about a creamy and rummy-like favor, whereas Lactobacillus rhamnosus GG significantly increased 2-heptanone, 3-hydroxybutan-2-one, and 2-pentanone contents, generating cheesy and buttery-like odors. Principal component analysis of GC-IMS data and linear discriminant analysis of E-nose results could effectively differentiate non-fermented sweet cherry juice and the sweet cherry juice separately inoculated with different LAB strains. Furthermore, there was a high correlation between the E-nose and GC-IMS results, providing a theoretical basis to identify different sweet cherry juice formulations and appropriate starter culture selection for fermentation. This study enables more extensive utilization of sweet cherry in the food industry and helps to improve the flavor of sweet cherry products.
Collapse
Affiliation(s)
- Jun Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China,*Correspondence: Jun Wang, ✉
| | - Bo-Cheng Wei
- School of Biology, Food and Environment, Hefei University, Hefei, China,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xin Wang
- School of Biology, Food and Environment, Hefei University, Hefei, China,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yan Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Yun-Jin Gong
- School of Biology, Food and Environment, Hefei University, Hefei, China
| |
Collapse
|
4
|
Li X, Peng S, Yu R, Li P, Zhou C, Qu Y, Li H, Luo H, Yu L. Co-Application of 1-MCP and Laser Microporous Plastic Bag Packaging Maintains Postharvest Quality and Extends the Shelf-Life of Honey Peach Fruit. Foods 2022; 11:foods11121733. [PMID: 35741931 PMCID: PMC9222991 DOI: 10.3390/foods11121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Honey peach (Prunus persica L.) is highly nutritious; it is an excellent source of sugars, proteins, amino acids, vitamins, and mineral elements. However, it is a perishable climacteric fruit that is difficult to preserve. In this study, “Feicheng” honey peach fruit was used as a test material to investigate the synergistic preservation effect of 1-methylcyclopropene (1-MCP) and laser microporous film (LMF). The peach fruits were fumigated for 24 h with 2 μL L−1 1-MCP, then packed in LMF. In comparison with the control treatment, 1-MCP + LMF treatment markedly decreased the respiration rate, weight loss, and rot rate of peach fruits. Moreover, the combination of 1-MCP and LMF suppressed the increase in soluble solids (SS) and reducing sugars (RS), as well as the decrease in titratable acid (TA) and ascorbic acid (AsA). The combined application also maintained a high protopectin content and low soluble pectin content; it reduced the accumulation of superoxide anions (O2−) and hydrogen peroxide (H2O2). Except in a few samples, the catalase (CAT) and ascorbate peroxidase (APX) activities were higher when treated by 1-MCP + LMF. Conversely, the phenylalanine deaminase (PAL), peroxidase (POD), lipase, lipoxygenase (LOX), polygalacturonase (PG), β-glucosidase, and cellulase (Cx) activities were lower than in the control. Furthermore, 1-MCP + LMF treatment reduced the relative abundances of dominant pathogenic fungi (e.g., Streptomyces, Stachybotrys, and Issa sp.). The combined treatment improved the relative abundances of antagonistic fungi (e.g., Aureobasidium and Holtermanniella). The results indicated that the co-application of 1-MCP and LMF markedly reduced weight loss and spoilage, delayed the decline of nutritional quality, and inhibited the physiological and biochemical metabolic activities of peach during storage. These changes extended its shelf-life to 28 days at 5 °C. The results provide a reference for the commercial application of this technology.
Collapse
Affiliation(s)
- Xuerui Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Sijia Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
| | - Renying Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
| | - Puwang Li
- South Subtropical Crop Research Institute of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang 524091, China; (P.L.); (C.Z.)
| | - Chuang Zhou
- South Subtropical Crop Research Institute of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang 524091, China; (P.L.); (C.Z.)
| | - Yunhui Qu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Hong Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Haibo Luo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
- Correspondence: (H.L.); (L.Y.)
| | - Lijuan Yu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
- Correspondence: (H.L.); (L.Y.)
| |
Collapse
|
5
|
Assessing the Use of Aloe vera Gel Alone and in Combination with Lemongrass Essential Oil as a Coating Material for Strawberry Fruits: HPLC and EDX Analyses. COATINGS 2022. [DOI: 10.3390/coatings12040489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Strawberry is a non-climacteric fruit but exhibits a limited postharvest life due to rapid softening and decay. A strawberry coating that is natural and safe for human consumption can be used to improve the appearance and safeguard the fruits. In this study, 20% and 40% Aloe vera gel alone or in combination with 1% lemongrass essential oil (EO) was used as an edible coating for strawberries. After application of all the treatments, the strawberry fruits were stored at a temperature of 5 ± 1 °C at a relative humidity (RH) of 90%–95% for up to 16 days and all the parameters were analyzed and compared to control (uncoated fruits). The results show that A. vera gel alone or with lemongrass EO reduced the deterioration and increased the shelf life of the fruit. Treatment with A. vera gel and lemongrass EO decreased acidity and total anthocyanins and maintained fruit firmness. Treatment with A. vera gel 40% + lemongrass EO 1% led to the lowest weight loss, retained firmness and acidity, but increased the total soluble solids and total anthocyanins compared to uncoated fruits during storage of up to 16 days. The phenolic compounds of A. vera gel were analyzed by HPLC, and the most abundant compounds were found to be caffeic (30.77 mg/mL), coumaric (22.4 mg/mL), syringic (15.12 mg/mL), sinapic (14.05 mg/mL), ferulic (8.22 mg/mL), and cinnamic acids (7.14 mg/mL). Lemongrass EO was analyzed by GC–MS, and the most abundant compounds were identified as α-citral (neral) (40.10%) ꞵ-citral (geranial) (30.71%), γ-dodecalactone (10.24%), isoneral (6.67%), neryl acetal (5.64%), and linalool (1.77%). When the fruits were treated with 20% or 40% A. vera gel along with 1% lemongrass, their total phenolic content was maintained during the storage period (from 4 to 8 days). The antioxidant activity was relatively stable during the 8 days of cold storage of the fruits coated with A. vera gel combined with lemongrass EO because the activity of both 20% and 40% gel was greater than that for the other treatments after 12 days of storage in both experiments. Moreover, all the treatments resulted in lower numbers of total microbes at the end of the storage period compared with the control treatment. This study indicates that the use of Aloe vera gel with lemongrass EO as an edible coating considerably enhances the productivity of strawberry fruits and the treatment could be used on a commercial scale.
Collapse
|
6
|
Teng X, Zhang M, Mujumdar AS. Potential application of laser technology in food processing. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Muley AB, Kedia P, Pegu K, Kausley SB, Rai B. Analyzing the physical and biochemical changes in strawberries during storage at different temperatures and the development of kinetic models. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01146-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Adv Colloid Interface Sci 2021; 291:102405. [PMID: 33819726 DOI: 10.1016/j.cis.2021.102405] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022]
Abstract
New packaging materials are an emerging field in the food industry. Poor thermal, mechanical, chemical, and physical properties of biopolymers, and also their inherent permeability to gases and vapor have increased this interest. Biopolymeric materials (matrix) require fillers, which can react/interact with available matrix in order to provide new formulations with improved properties. Many studies have shown the potential use of metal nanoparticles in biopolymeric packaging and edible coatings for improving their properties. The current review summarizes the characterization of bio-nanocomposite films and edible coatings incorporated with metal nanoparticles on the shelf life and quality of tropical fruits, berries, climacteric/non-climacteric fruits and vegetables. It also provides a brief description of some advantages of bio-nanocomposite films and edible coatings applied to fruits and vegetables such as decreasing the color changes, respiration rate, weight loss and extended shelf life, delaying ripening and being environmentally friendly. The results of recent reports provide a better understanding of the impact of metal nanoparticles incorporated in biopolymers on the shelf life and the quality of fruits and vegetables.
Collapse
|
9
|
Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit ( Morus alba L. cv Kokuso 21). INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8844502. [PMID: 33614781 PMCID: PMC7878082 DOI: 10.1155/2021/8844502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022]
Abstract
The control of temperature and gas composition is essential to maintain the fresh flavor and quality of perishable fruits like mulberry. This study presented a modified atmosphere experiment (MAP) for fresh fruit showing the potential benefits of innovative gas mixing with argon. The effects of MAP were studied on the physicochemical and qualitative attributes of mulberry preserved at 4 ± 1°C and 90 ± 5% R.H. Fresh mulberries were packaged with different gas combinations: MAP1 (4%O2+6%CO2+90%N2), MAP2 (10%O2+5%CO2+85%Ar), CTR1 (20.9%O2+0.04%CO2), and CTR2 (10%O2+5%CO2+85%N2). Changes in quality parameters were evaluated after 0, 4, 8, and 12 days of storage. Mulberries packaged with MAP had a lower weight loss than CTR samples which lost more than 80% of their initial weight. Furthermore, the results showed that the argon treatment was the best in keeping the fruit juice content, preserving its structure. Despite not showing great differences with MAP1 treatment, Ar allowed to maintain high TSS up to 8 storage days, slowed CO2 production. The sensory profile of mulberry fruit was not significantly affected by storage in modified atmospheres, and the production of potential unpleasant odors in MAP2 could not be perceived. The results of this study confirm that this innovative approach, using MAP technology, has a potential use in maintaining mulberry fruit quality for a longer time.
Collapse
|
10
|
Arabpoor B, Yousefi S, Weisany W, Ghasemlou M. Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106394] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020; 9:E1438. [PMID: 33050581 PMCID: PMC7601795 DOI: 10.3390/foods9101438] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package's antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Durmuş Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31030 Antakya Hatay, Turkey;
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
12
|
Qu P, Zhang M, Fan K, Guo Z. Microporous modified atmosphere packaging to extend shelf life of fresh foods: A review. Crit Rev Food Sci Nutr 2020; 62:51-65. [PMID: 32856460 DOI: 10.1080/10408398.2020.1811635] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, microporous modified atmosphere packaging has been widely concerned because of its adjustable air permeability and low processing cost. With the development and increasing demand of fresh food industry, the limited permeability of film in modified atmosphere packaging can't meet the fresh-keeping requirements of fresh foods, especially vegetables and fruits. Microporous film can flexibly adjust the gas permeability according to the physiological metabolic characteristics of fresh foods, which has gradually become a fresh-keeping technology in the domain of vegetables and fruits. This paper reviewed the research progress of microporous modified atmosphere packaging and its extension on shelf life of fresh foods. The latest applied researches were described in a comprehensive manner, particularly fruits and vegetables. Besides, this article also covered theoretical support and analysis, including the perforation mode, air permeability mechanism and mathematical model of microporous film, the characteristics of fresh foods, pore parameters and traits of film materials. This paper payed attention to the application of environmentally friendly degradable film materials (biological film materials, nano materials) in fruits and vegetables preservation. Research has shown that the degradable material can enlarge the fresh-keeping effect of microporous modified atmosphere packaging, which is worthy of further research and development. Finally, the development trends and directions in the future were discussed.
Collapse
Affiliation(s)
- Ping Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhimei Guo
- R & D Center, Wuxi Haihe Equipment Co, Wuxi, China
| |
Collapse
|
13
|
De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, Santoro V, Capozzi V, Colelli G, Spano G, Russo P. Botrytis cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020; 9:E1138. [PMID: 32824971 PMCID: PMC7555317 DOI: 10.3390/foods9091138] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Consumers highly appreciate table grapes for their pleasant sensory attributes and as good sources of nutritional and functional compounds. This explains the rising market and global interest in this product. Along with other fruits and vegetables, table grapes are considerably perishable post-harvest due to the growth of undesired microorganisms. Among the microbial spoilers, Botrytis cinerea represents a model organism because of its degrading potential and the huge economic losses caused by its infection. The present review provides an overview of the recent primary physical, chemical, and biological control treatments adopted against the development of B. cinerea in table grapes to extend shelf life. These treatments preserve product quality and safety. This article also focuses on the compliance of different approaches with organic and sustainable production processes. Tailored approaches include those that rely on controlled atmosphere and the application of edible coating and packaging, as well as microbial-based activities. These strategies, applied alone or in combination, are among the most promising solutions in order to prolong table grape quality during cold storage. In general, the innovative design of applications dealing with hurdle technologies holds great promise for future improvements.
Collapse
Affiliation(s)
- Nicola De Simone
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| | - Bernardo Pace
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Francesco Grieco
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | | | | | - Vincenzo Santoro
- A.B.A. Mediterranea s.c.a.r.l., Via Parini, 1, 74013 Ginosa, Italy;
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy;
| | - Giancarlo Colelli
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| | - Giuseppe Spano
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| | - Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (N.D.S.); (G.C.); (G.S.); (P.R.)
| |
Collapse
|
14
|
Zhang X, Wang X, Xing S, Ma Y, Wang X. Multi-Sensors Enabled Dynamic Monitoring and Quality Assessment System (DMQAS) of Sweet Cherry in Express Logistics. Foods 2020; 9:foods9050602. [PMID: 32397121 PMCID: PMC7278863 DOI: 10.3390/foods9050602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022] Open
Abstract
The market demand for fresh sweet cherries in China has experienced continuous growth due to its rich nutritional value and unique taste. Nonetheless, the characteristics of fruits, transportation conditions and uneven distribution pose a huge obstacle in keeping high quality, especially in express logistics. This paper proposes dynamic monitoring and quality assessment system (DMQAS) to reduce the quality loss of sweet cherries in express logistics. The DMQAS was tested and evaluated in three typical express logistics scenarios with “Meizao” sweet cherries. The results showed that DMQAS could monitor the changes of critical micro-environmental parameters (temperature, relative humidity, O2, CO2 and C2H4) during the express logistics, and the freshness prediction model showed high accuracy (the relative error was controlled within 10%). The proposed DMQAS could provide complete and accurate microenvironment data and can be used to further improve the quality and safety management of sweet cherries during express logistics.
Collapse
Affiliation(s)
- Xiaoshuan Zhang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (X.Z.); (X.W.); (Y.M.)
| | - Xuepei Wang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (X.Z.); (X.W.); (Y.M.)
| | - Shaohua Xing
- College of Food Engineering, Ludong University, Yantai 264025, China;
| | - Yunfei Ma
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (X.Z.); (X.W.); (Y.M.)
| | - Xiang Wang
- Beijing Laboratory of Food Quality and Safety, College of Engineering, China Agricultural University, Beijing 100083, China; (X.Z.); (X.W.); (Y.M.)
- Correspondence: ; Tel.: +86-(0)10-62736717
| |
Collapse
|