1
|
Tran TD, Lee SI, Hnasko R, McGarvey JA. Biocontrol of Escherichia coli O157:H7 by Enterobacter asburiae AEB30 on intact cantaloupe melons. Microb Biotechnol 2024; 17:e14437. [PMID: 38465735 PMCID: PMC10926056 DOI: 10.1111/1751-7915.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Escherichia coli O157:H7 causes >73,000 foodborne illnesses in the United States annually, many of which have been associated with fresh ready-to-eat produce including cantaloupe melons. In this study, we created a produce-associated bacterial (PAB) library containing >7500 isolates and screened them for the ability to inhibit the growth of E. coli O157:H7 using an in vitro fluorescence-based growth assay. One isolate, identified by 16S and whole-genome sequence analysis as Enterobacter asburiae, was able to inhibit the growth of E. coli by ~30-fold in vitro and produced zones of inhibition between 13 and 21 mm against 12 E. coli outbreak strains in an agar spot assay. We demonstrated that E. asburiae AEB30 was able to grow, persist and inhibit the growth of E. coli on cantaloupe melons under simulated pre- and post-harvest conditions. Analysis of the E. asburiae AEB30 genome revealed an operon encoding a contact-dependent growth inhibition (CDI) system that when mutated resulted in the loss of E. coli growth inhibition. These data suggest that E. asburiae AEB30 is a potential biocontrol agent to prevent E. coli contamination of cantaloupe melons in both pre- and post-harvest environments and that its mode of action is via a CDI system.
Collapse
Affiliation(s)
- Thao D. Tran
- USDA, ARS, Foodborne Toxin Detection and Prevention Research UnitAlbanyCaliforniaUSA
| | - Sang In Lee
- USDA, ARS, Foodborne Toxin Detection and Prevention Research UnitAlbanyCaliforniaUSA
| | - Robert Hnasko
- USDA, ARS, Produce Safety and Microbiology Research UnitAlbanyCaliforniaUSA
| | - Jeffery A. McGarvey
- USDA, ARS, Foodborne Toxin Detection and Prevention Research UnitAlbanyCaliforniaUSA
| |
Collapse
|
2
|
Abdulsalam RA, Ijabadeniyi OA, Cason ED, Sabiu S. Characterization of Microbial Diversity of Two Tomato Cultivars through Targeted Next-Generation Sequencing 16S rRNA and ITS Techniques. Microorganisms 2023; 11:2337. [PMID: 37764180 PMCID: PMC10534366 DOI: 10.3390/microorganisms11092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Even though the nutritional and economic values of Solanum lycopersicum (tomato) are substantially impacted by microbial spoilage, the available data on its microbial community, particularly during spoilage, are limited and have primarily been characterized using conventional culture-dependent methods. This study employed a targeted high-throughput next-generation sequencing method to longitudinally characterize the microbial diversity of two South African tomato cultivars (jam and round) at varied storage intervals (1, 6, and 12 days). Throughout the storage period, the bacterial communities of the two cultivars were more diverse than the fungal communities. The microbial diversity of both bacteria and fungi was greater and comparable between the cultivars on day 1, but becomes distinct as the storage period increases, with round tomatoes being more diverse than jam tomato, though, on day 12, jam tomato develops greater diversity than round tomato. Overall, the most abundant phyla (though Proteobacteria was most dominant) were Proteobacteria, Firmicutes, and Bacteriodota in the bacterial communities, while Ascomycota and Basidiomycota formed most fungal communities with Ascomycota being dominant. At the genus level, Pantoea and Klebsiella (bacteria), Hanseniaspora, Stemphylium, and Alternaria (fungi) were prevalent. Taken together, this study casts light on a broad microbial diversity profile thus, confirms the cultivars' diversity and abundance differences.
Collapse
Affiliation(s)
- Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa
| | | | - Errol D. Cason
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
3
|
Mileriene J, Aksomaitiene J, Kondrotiene K, Asledottir T, Vegarud GE, Serniene L, Malakauskas M. Whole-Genome Sequence of Lactococcus lactis Subsp. lactis LL16 Confirms Safety, Probiotic Potential, and Reveals Functional Traits. Microorganisms 2023; 11:microorganisms11041034. [PMID: 37110457 PMCID: PMC10145936 DOI: 10.3390/microorganisms11041034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Safety is the most important criteria of any substance or microorganism applied in the food industry. The whole-genome sequencing (WGS) of an indigenous dairy isolate LL16 confirmed it to be Lactococcus lactis subsp. lactis with genome size 2,589,406 bp, 35.4% GC content, 246 subsystems, and 1 plasmid (repUS4). The Nextera XT library preparation kit was used to generate the DNA libraries, and the sequencing was carried out on an Illumina MiSeq platform. In silico analysis of L. lactis LL16 strain revealed non-pathogenicity and the absence of genes involved in transferable antimicrobial resistances, virulence, and formation of biogenic amines. One region in the L. lactis LL16 genome was identified as type III polyketide synthases (T3PKS) to produce putative bacteriocins lactococcin B, and enterolysin A. The probiotic and functional potential of L. lactis LL16 was investigated by the presence of genes involved in adhesion and colonization of the host's intestines and tolerance to acid and bile, production of enzymes, amino acids, and B-group vitamins. Genes encoding the production of neurotransmitters serotonin and gamma-aminobutyric acid (GABA) were detected; however, L. lactis LL16 was able to produce only GABA during milk fermentation. These findings demonstrate a variety of positive features that support the use of L. lactis LL16 in the dairy sector as a functional strain with probiotic and GABA-producing properties.
Collapse
Affiliation(s)
- Justina Mileriene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Jurgita Aksomaitiene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Kristina Kondrotiene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Tora Asledottir
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Gerd Elisabeth Vegarud
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Loreta Serniene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Mindaugas Malakauskas
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
4
|
Reuben RC, Langer D, Eisenhauer N, Jurburg SD. Universal drivers of cheese microbiomes. iScience 2023; 26:105744. [PMID: 36582819 PMCID: PMC9792889 DOI: 10.1016/j.isci.2022.105744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The culinary value, quality, and safety of cheese are largely driven by the resident bacteria, but comparative analyses of the cheese microbiota across cheese types are scarce. We present the first global synthesis of cheese microbiomes. Following a systematic literature review of cheese microbiology research, we collected 16S rRNA gene amplicon sequence data from 824 cheese samples spanning 58 cheese types and 16 countries. We found a consistent, positive relationship between microbiome richness and pH, and a higher microbial richness in cheeses derived from goat milk. In contrast, we found no relationship between pasteurization, geographic location, or salinity and richness. Milk and cheese type, geographic location, and pasteurization collectively explained 65% of the variation in microbial community composition. Importantly, we identified four universal cheese microbiome types, driven by distinct dominant taxa. Our study reveals notable diversity patterns among the cheese microbiota, which are driven by geography and local environmental variables.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
| | - Désirée Langer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
| | - Stephanie D. Jurburg
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
5
|
Ahsan A, Mazhar B, Khan MK, Mustafa M, Hammad M, Ali NM. Bacteriocin-mediated inhibition of some common pathogens by wild and mutant Lactobacillus species and in vitro amplification of bacteriocin encoding genes. ADMET AND DMPK 2022; 10:75-87. [PMID: 35360671 PMCID: PMC8963578 DOI: 10.5599/admet.1053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Lactobacilli are the most common probiotics used in food and other industries because of their capability of producing bacteriocins. Bacteriocins are compounds that are used to kill pathogenic microorganisms. As most bacteria have become resistant to synthetic antibacterial tools, the importance of using probiotics as antibacterial agents has increased. This work was done to check the bacteriocin effect on some common pathogens and the influence of mutation on the bacteriocin activity of Lactobacilli was also investigated. Four strains were isolated, identified from meat and pickles samples via culturing methods, staining, biochemical tests, and ribotyping. Preliminary tests, including Gram staining and catalase test, were done for the confirmation of Lactobacillus species. All strains were gram-positive and catalase-negative. Antibacterial activity was checked against Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus thuringiensis, Escherichia coli, and Salmonella enteritis via agar well diffusion method. The mutations were done using ethidium bromide and the influence of wild and mutants were also checked. Interestingly, mutants developed more virulence than wild ones. It was also observed that they all were sensitive to pepsin. Protein estimation was done via Bradford method. Ribotyping of GCU-W-PS1 revealed 99 % homology with Lactobacillus plantarum and GCU-W-MS1 to Lactobacillus curvatus (99 % homology). Curvacin A, sakacin P, and plantaricin A genes were also amplified using specific primers. Gene sequence showed the presence of curvacin A gene in GCU-W-MS1. It was concluded that lactic acid bacteria could be used as antibacterial tools against common pathogens.
Collapse
|
6
|
Sabater C, Cobo-Díaz JF, Álvarez-Ordóñez A, Ruas-Madiedo P, Ruiz L, Margolles A. Novel methods of microbiome analysis in the food industry. Int Microbiol 2021; 24:593-605. [PMID: 34686940 DOI: 10.1007/s10123-021-00215-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The study of the food microbiome has gained considerable interest in recent years, mainly due to the wide range of applications that can be derived from the analysis of metagenomes. Among these applications, it is worth mentioning the possibility of using metagenomic analyses to determine food authenticity, to assess the microbiological safety of foods thanks to the detection and tracking of pathogens, antibiotic resistance genes and other undesirable traits, as well to identify the microorganisms responsible for food processing defects. Metataxonomics and metagenomics are currently the gold standard methodologies to explore the full potential of metagenomes in the food industry. However, there are still a number of challenges that must be solved in order to implement these methods routinely in food chain monitoring, and for the regulatory agencies to take them into account in their opinions. These challenges include the difficulties of analysing foods and food-related environments with a low microbial load, the lack of validated bioinformatics pipelines adapted to food microbiomes and the difficulty of assessing the viability of the detected microorganisms. This review summarizes the methods of microbiome analysis that have been used, so far, in foods and food-related environments, with a specific focus on those involving Next-Generation Sequencing technologies.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain. .,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| |
Collapse
|
7
|
Zotta T, Ricciardi A, Condelli N, Parente E. Metataxonomic and metagenomic approaches for the study of undefined strain starters for cheese manufacture. Crit Rev Food Sci Nutr 2021; 62:3898-3912. [PMID: 33455430 DOI: 10.1080/10408398.2020.1870927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Undefined strain starters are used for the production of many traditional and artisanal cheeses. Composition of undefined starters depends on several factors, and the diversity in strains and species significantly affects cheese quality and features. Culture-dependent approaches have long been used for the microbial profiling and functionalities of undefined cultures but underestimate their diversity due to culturability biases. Recently, culture-independent methods, based on high-throughput sequencing (HTS), have been preferred, with a significant boost in resolution power and sensitivity level. Amplicon targeted (AT) metagenomics, based on 16S rRNA sequencing, returned a larger microbiota diversity at genus and, sometimes, at species levels for artisanal starters of several PDO cheeses, but was inappropriate for populations with high strain diversity, and other gene targets were tested in AT approaches. Shotgun metagenomics (total DNA) and metatranscriptomics (total RNA), although are more powerful in depicting diversity and functionality of undefined cultures, have been rarely applied because of some limitations (e.g., high costs and laboriousness, need for bioinformatics skills). The advantages of HTS technologies are undoubted, but some hurdles need to be still overcame (e.g., resolution power, discrepancy between active and inactive cells, robust analytic pipelines, cost and time reduction for integrated approaches) so that HTS become routinary and convenient for defining complexity, microbial interactions (including host-phage relationships) and evolution in cheeses of undefined starters.
Collapse
Affiliation(s)
- Teresa Zotta
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Annamaria Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Nicola Condelli
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| | - Eugenio Parente
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy
| |
Collapse
|
8
|
Younas S, Mazhar B, Liaqat I, Ali S, Tahir HM, Ali NM. Bacteriocin Production by <i>Lactobacilli</i> and Their Role as Antibacterial Tool against Common Pathogens. J Oleo Sci 2021; 71:541-550. [DOI: 10.5650/jos.ess21424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|