1
|
Ebrahiminejad A, Sepahi AA, Yadegar A, Meyfour A. Pasteurized form of a potential probiotic lactobacillus brevis IBRC-M10790 exerts anti-inflammatory effects on inflammatory bowel disease in vitro. BMC Complement Med Ther 2024; 24:258. [PMID: 38987744 PMCID: PMC11234635 DOI: 10.1186/s12906-024-04576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal system. So far, no treatment has been identified that can completely cure IBD. Lactobacillus brevis is hypothesized to be beneficial in preventing inflammation. This study aimed to evaluate the potential probiotic effects of live and pasteurized L. brevis IBRC-M10790 on the in vitro cell co-culture model of IBD. METHODS An in vitro intestinal model was established using a transwell co-culture system of Caco-2 intestinal epithelial cells and RAW264.7 macrophages. Inflammatory conditions were induced in RAW264.7 cells using lipopolysaccharide. The effects of live and pasteurized L. brevis IBRC-M10790 on inflammatory mediators and epithelial barrier markers were investigated. RESULTS L. brevis IBRC-M10790 was able to significantly decrease the proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and increase the anti-inflammatory cytokine (IL-10) in the in vitro co-culture system. In addition, L. brevis increased adherens and tight junction (TJ) markers (ZO-1, E-cadherin, and Occludin) in Caco-2 intestinal epithelial cells. Based on the results, pasteurized L. brevis showed a higher protective effect than live L. brevis. CONCLUSIONS Our findings suggest that live and pasteurized forms of L. brevis possess probiotic properties and can mitigate inflammatory conditions in IBD.
Collapse
Affiliation(s)
- Ardeshir Ebrahiminejad
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lao J, Yan S, Yong Y, Li Y, Wen Z, Zhang X, Ju X, Li Y. Lacticaseibacillus casei IB1 Alleviates DSS-Induced Inflammatory Bowel Disease by Regulating the Microbiota and Restoring the Intestinal Epithelial Barrier. Microorganisms 2024; 12:1379. [PMID: 39065147 PMCID: PMC11278699 DOI: 10.3390/microorganisms12071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is becoming an increasingly serious health problem in humans and animals. Probiotics can inhibit the development of IBD. Due to the specificity of the strains, the function and mechanism of action of different strains are still unclear. Here, a DSS-induced colitis mouse model was utilized to investigate the ability and mechanism by which Lacticaseibacillus casei IB1 alleviates colitis. Treatment with L. casei IB1 improved DSS-induced colitis in mice, as indicated by increased body weight, colon length, and goblet cell numbers and decreased disease activity index (DAI), proinflammatory factor (TNF-α, IL-1β, and IL-6) levels, and histopathological scores after intake of IB1. IB1 supplementation also improved the expression of tight junction proteins and inhibited the activation of the MAPK and NF-κB signaling pathways to alleviate intestinal inflammation. In addition, IB1 rebalanced the intestinal microbial composition of colitis mice by increasing the abundance of Faecalibaculum and Alistipes and decreasing the abundance of Bacteroides and Escherichia_Shigella. In summary, L. casei IB1 showed great potential for relieving colitis by regulating the microbiota and restoring the epithelial barrier. It can be used as a potential probiotic for the prevention and treatment of UC in the future.
Collapse
Affiliation(s)
- Jianlong Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Shuping Yan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Yin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Zhaohai Wen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xiaoyong Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Youquan Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.Y.); (Y.Y.); (Y.L.); (Z.W.); (X.Z.)
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
3
|
Niu Y, Zhang R, Yang C, He J, Wang T. Dietary supplementation with dihydroartemisinin improves intestinal barrier function in weaned piglets with intrauterine growth retardation by modulating the gut microbiota. J Anim Sci 2024; 102:skae140. [PMID: 38813622 PMCID: PMC11222986 DOI: 10.1093/jas/skae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
The aim of this study was to investigate whether dietary dihydroartemisinin (DHA) supplementation could improve intestinal barrier function and microbiota composition in intrauterine growth restriction (IUGR) weaned piglets. Twelve normal birth weight (NBW) piglets and 24 IUGR piglets at 21 d of age were divided into three groups, which were fed a basal diet (NBW-CON and IUCR-CON groups) and an 80 mg/kg DHA diet (IUGR-DHA group). At 49 d of age, eight piglets of each group with similar body weights within groups were slaughtered, and serum and small intestine samples were collected. The results showed that IUGR piglets reduced growth performance, impaired the markers of intestinal permeability, induced intestinal inflammation, decreased intestinal immunity, and disturbed the intestinal microflora. Dietary DHA supplementation increased average daily gain, average daily feed intake, and body weight at 49 d of age in IUGR-weaned piglets (P < 0.05). DHA treatment decreased serum diamine oxidase activity and increased the numbers of intestinal goblet cells and intraepithelial lymphocytes, concentrations of jejunal mucin-2 and ileal trefoil factor 3, and intestinal secretory immunoglobin A and immunoglobin G (IgG) concentrations of IUGR piglets (P < 0.05). Diet supplemented with DHA also upregulated mRNA abundances of jejunal IgG, the cluster of differentiation 8 (CD8), major histocompatibility complex-I (MHC-I), and interleukin 6 (IL-6) and ileal IgG, Fc receptor for IgG (FcRn), cluster of differentiation 8 (CD4), CD8, MHC-I, IL-6 and tumor necrosis factor α (TNF-α), and enhanced mRNA abundance and protein expression of intestinal occludin and ileal claudin-1 in IUGR piglets (P < 0.05). In addition, DHA supplementation in the diet improved the microbial diversity of the small intestine of IUGR piglets and significantly increased the relative abundance of Actinobacteriota, Streptococcus, Blautia and Streptococcus in the jejunum, and Clostridium sensu_ stricto_in the ileum (P < 0.05). The intestinal microbiota was correlated with the mRNA abundance of tight junction proteins and inflammatory response-related genes. These data suggested that DHA could improve the markers of intestinal barrier function in IUGR-weaned piglets by modulating gut microbiota. DHA may be a novel nutritional candidate for preventing intestinal dysfunction in IUGR pigs.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Caimei Yang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Sujaya IN, Dharmika IAGW, Suwardana GNR, Mariadi IK, Arijana IGKN, Winaya IBO, Nocianitri KA, Ramona Y, Fatmawati NND. Weissella confusa F213 ameliorated inflammation and maintained intestinal mucosa integrity in chemically induced colitis rats. BMC Res Notes 2023; 16:178. [PMID: 37608379 PMCID: PMC10463849 DOI: 10.1186/s13104-023-06456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
OBJECTIVE This study was performed to investigate the potential effects of Weissella confusa F213 (WCF213) on chemically-induced colitis rats. Twelve male Wistar rats were divided into three groups: T1 (saline sterile), T2 (2.5% dextran sulfate sodium (DSS)- for 7 days), and T3 (WCF213 for 14 days, continued with 2.5% DSS for 7 days). The disease activity index (DAI) was monitored. After sacrificing the rats, the colon was collected for length measurement, local TNF-α level, HE staining for histology, and ZO-1 expression by using immunohistochemistry. RESULTS WCF213 administration prevented weight loss and haematochezia, maintained average colon length and alleviated the clinical symptom of colitis, such as diarrhoea, albeit statistically non-significant (p < 0.05) compared with the T2 group. The histopathology of WCF213-treated colitis rats showed better architecture and less inflammatory cell infiltration into colon tissue. WCF213 significantly maintained the expression of ZO-1 in the mucosa (p < 0.001) and markedly reduced mucosal TNF-α concentration (p < 0.001) compared with the DSS group. Hence, these findings suggested that WCF213 attenuated clinical symptoms and inflammation and maintained mucosal integrity in DSS-induced colitis in vivo.
Collapse
Grants
- B/136-11/UN14.4. A/PT.01.05/2021 Ministry of Education, Culture, Research, and Technology, Republic of Indonesia, and the Institute of Research and Community Services, Udayana University (LPPM UNUD)
- B/136-11/UN14.4. A/PT.01.05/2021 Ministry of Education, Culture, Research, and Technology, Republic of Indonesia, and the Institute of Research and Community Services, Udayana University (LPPM UNUD)
- B/136-11/UN14.4. A/PT.01.05/2021 Ministry of Education, Culture, Research, and Technology, Republic of Indonesia, and the Institute of Research and Community Services, Udayana University (LPPM UNUD)
Collapse
Affiliation(s)
- I Nengah Sujaya
- School of Public Health, Faculty of Medicine, Udayana University, Bali, Indonesia
| | | | | | - I Ketut Mariadi
- Division Gastroenterohepatology, Department of Internal Medicine, Udayana University/Professor Dr. I.G.N.G. Ngoerah Hospital, Denpasar, Bali, Indonesia
| | | | - Ida Bagus Oka Winaya
- Pathology Anatomy Laboratory, Faculty of Veterinary, Udayana University, Bali, Indonesia
| | - Komang Ayu Nocianitri
- School of Food Technology, Faculty of Agricultural Technology, Udayana University, Bali, Indonesia
| | - Yan Ramona
- School of Biology, Faculty of Mathematics and Natural Sciences, Udayana University, Bali, Indonesia
| | | |
Collapse
|
5
|
Yue K, Mao B, Tang X, Zhang Q, Zhao J, Cui S, Chen W. Recent updates in anti-glycation strategies: selection of natural products and lactic acid bacteria as potential inhibitors based on the multi-pathway anti-glycation targets. Crit Rev Food Sci Nutr 2023; 64:11026-11043. [PMID: 37417364 DOI: 10.1080/10408398.2023.2232015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The prevalence of high-sugar diets and unhealthy habits exacerbates the production of advanced glycation end products (AGEs) in the body. When AGEs excessively accumulate in the body, they accelerate the aging process while directly or indirectly causing other complications that can seriously damage the body. Prevention of glycation damage is gaining increasing attention; however, a systematic strategy to combat glycation and specific glycation inhibitors is still lacking. By analyzing the process of glycation damage, we suggest that glycation damage can be mitigated by the inhibition of AGEs production, binding to proteins, and binding to receptors for advanced glycation end products, as well as the attenuation of downstream linkage reactions. This review summarizes the process of glycation damage. According to each step of the process, the review presents the corresponding anti-glycation strategies. Based on recent anti-glycation studies, we support the fabrication of glycation inhibitors by using natural plant products and fermentation products of lactic acid bacteria that partially exhibit anti-glycation properties. This review summarizes the mechanisms by which these dietary ingredients perform anti-glycation functions, providing relevant research evidence. We hope that this review will support and assist subsequent investigations in the development of anti-glycation inhibitors.
Collapse
Affiliation(s)
- Kaiyan Yue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Nascimento da Silva K, Fávero AG, Ribeiro W, Ferreira CM, Sartorelli P, Cardili L, Bogsan CS, Bertaglia Pereira JN, de Cássia Sinigaglia R, Cristina de Moraes Malinverni A, Ribeiro Paiotti AP, Miszputen SJ, Ambrogini-Júnior O. Effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Heliyon 2022; 9:e12707. [PMID: 36685418 PMCID: PMC9852935 DOI: 10.1016/j.heliyon.2022.e12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background and aim The etiopathogenesis of inflammatory bowel disease (IBD) is associated with different factors such as genetic, infectious, immunological, and environmental, including modification of the gut microbiota. IBD's conventional pharmacological therapeutic approaches have become a challenge due to side effects, complications from prolonged use, and higher costs. Kefir fermented milk beverage is a functional food that has demonstrated multiple beneficial effects including anti-inflammatory and antioxidant activity. Alternative therapeutic strategies have been used for IBD as more natural products with low-cost and easy acquisition. The aim of this study is to evaluate the anti-inflammatory effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Methods We used 4 groups to perform this study: baseline control (BC), kefir control (KC), 5% untreated DSS-induced colitis (DSS), and 5% DSS-induced colitis treated with kefir (DSSK). The animals received fermented kefir milk beverage ad libitum for six days and the disease activity index was recorded daily. Colon samples were processed for Transmission Electron Microscopy and histopathological evaluation. We analyzed short fatty chain acids through the fecal sample using gas chromatography. Results Kefir supplementation was able to reduce the clinical activity index and inflammatory process evidenced by decreased neutrophil accumulation, decreased reticulum edema, and increased autophagosomes. Also, showed a trend to increase the levels of acetate and propionate. Conclusions Our results suggest that kefir fermented milk beverage may have an anti-inflammatory effect minimizing the intestinal damage of DSS-induced colitis.
Collapse
Affiliation(s)
- Karina Nascimento da Silva
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Aline Garnevi Fávero
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - William Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristina Stewart Bogsan
- Laboratory of Fermented Foods of the Faculty of Pharmaceutical Sciences – University of São Paulo
| | | | | | | | - Ana Paula Ribeiro Paiotti
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil,Corresponding author.
| | - Sender Jankiel Miszputen
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Orlando Ambrogini-Júnior
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| |
Collapse
|
7
|
Su L, Ma F, An Z, Ji X, Zhang P, Yue Q, Zhao C, Sun X, Li K, Li B, Liu X, Zhao L. The Metabolites of Lactobacillus fermentum F-B9-1 Relieved Dextran Sulfate Sodium-Induced Experimental Ulcerative Colitis in Mice. Front Microbiol 2022; 13:865925. [PMID: 35572623 PMCID: PMC9096258 DOI: 10.3389/fmicb.2022.865925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Because of the increased incidence and prevalence, ulcerative colitis (UC) has become a global health issue in the world. Current therapies for UC are not totally effective which result in persistent and recurrent symptom of many patients. Lactobacillus with anti-inflammatory effects might be beneficial to the prevention or treatment for UC. Here, we examined the ameliorative effects of the metabolites of Lactobacillus fermentum F-B9-1 (MLF) in Caco-2 cells and dextran sodium sulfate (DSS)-induced UC model mice. MLF displayed intestinal barrier-protective activities in Caco-2 cells by increasing the expression of Occludin and ZO-1. They also showed anti-inflammatory potential in interleukin (IL)-1β and IL-6. In order to further examine the in vivo anti-inflammatory effect of MLF, the MLF was gavaged in the DSS-induced UC model mice. The intragastric administration of MLF effectively alleviated colitis symptoms of weight loss, diarrhea, colon shortening, and histopathological scores, protected intestinal barrier function by increasing Occludin and ZO-1, and attenuated colonic and systemic inflammation by suppressing production of IL-1β and IL-6. Finally, the use of MLF remodeled the diversity of the gut microbiota and increased the number of beneficial microorganisms. Overall, the results demonstrated that MLF relieved DSS-induced UC in mice. And MLF might be an effective therapy method to UC in the clinic in the future.
Collapse
Affiliation(s)
- Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shengshengxiangrong (Shandong) Biotechnology Co., Ltd., Jinan, China
| | - Feifan Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xiuyu Ji
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ping Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, China
| | - Baojun Li
- Jinan Hangchen Biotechnology Co., Ltd., Jinan, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
| |
Collapse
|
8
|
Piccioni A, Franza L, Vaccaro V, Saviano A, Zanza C, Candelli M, Covino M, Franceschi F, Ojetti V. Microbiota and Probiotics: The Role of Limosilactobacillus Reuteri in Diverticulitis. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57080802. [PMID: 34441008 PMCID: PMC8398895 DOI: 10.3390/medicina57080802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023]
Abstract
The microbiota is the set of commensal microorganisms, residing in the organism, helping proper functioning of organs and systems. The role that the microbiota plays in maintaining the health of vertebrates is widely accepted, particularly in the gastrointestinal system, where it is fundamental for immunity, development, and conversion of nutrients. Dysbiosis is an alteration of the microbiota which refers to a disturbed balance, which can cause a number of pathologies. Probiotics have proven to be effective in modulating the microbiota of the gastrointestinal system and, therefore, in promoting the health of the individual. In particular, Lactobacilli are a group of Gram-positive bacteria, which are able to produce lactic acid through glucose metabolism. They are present in different microenvironments, ranging from the vagina, to the mouth, to different tracts of the small intestine. In the present review, we will discuss the use of Limosilactobacillus in human health in general and more specifically in diverticulitis. In particular we analyze the role of Limosilactobacillus reuteri and its anti-inflammatory action. For this review, articles were identified using the electronic PubMed database through a comprehensive search, conducted by combining key terms such as "diverticulitis", "Limosilactobacillus reuteri", "human health and disease", "probiotics". We selected all the articles published in the last 10 years and screened 1017 papers. Articles referenced in the screened papers were evaluated if considered interesting for our topic. Probiotics have proven to be effective in modulating the microbiota of the gastrointestinal system and, therefore, in promoting the health of the individual. The importance of probiotics in treating diverticular disease and acute diverticulitis can be further understood if taking into consideration some pathophysiological aspects, associated to the microbiota. L. reuteri plays an important role in human health and disease. The effectiveness of L. reuteri in stimulating a correct bowl motility partly explains its effectiveness in treating diverticulitis. The most important action of L. reuteri is probably its immunomodulating activity. Levels of IL-6, IL-8, and Tumor necrosis factor (TNF-alpha) are reduced after supplementation with different strands of Lactobacilli, while T-regulatory cells increase in number and activity. Anyway, new mechanisms of action of probiotics come to light from the many investigations currently taking place in numerous centres around the world and to improve how exactly probiotic administration could make the difference in the management of diverticular disease and acute diverticulitis.
Collapse
Affiliation(s)
- Andrea Piccioni
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (M.C.); (M.C.); (F.F.)
- Correspondence:
| | - Laura Franza
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| | - Vanessa Vaccaro
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| | - Angela Saviano
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| | - Christian Zanza
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| | - Marcello Candelli
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (M.C.); (M.C.); (F.F.)
| | - Marcello Covino
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (M.C.); (M.C.); (F.F.)
| | - Francesco Franceschi
- Emergency Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (M.C.); (M.C.); (F.F.)
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| | - Veronica Ojetti
- Emergency Department, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (L.F.); (V.V.); (A.S.); (C.Z.); (V.O.)
| |
Collapse
|
9
|
Han Y, Zhao Q, Tang C, Li Y, Zhang K, Li F, Zhang J. Butyrate Mitigates Weanling Piglets From Lipopolysaccharide-Induced Colitis by Regulating Microbiota and Energy Metabolism of the Gut-Liver Axis. Front Microbiol 2020; 11:588666. [PMID: 33363521 PMCID: PMC7752768 DOI: 10.3389/fmicb.2020.588666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disorder is accompanied by the destruction of immunity homeostasis, gut microbiota perturbation, and chronic inflammatory liver diseases. Butyrate is known as a primary energy source for colonocytes and functional substances for mitigating pathological features of colitis. However, it is still unclear whether butyrate alleviates colitis progression by regulation of microbiota and metabolism in the gut-liver axis. In the present study, we aimed to determine the role of microbiota and metabolism of the gut-liver axis in ameliorating lipopolysaccharide (LPS)-induced colitis in piglets using protected butyrate administration. Eighteen crossbred male piglets were weaned at 30 days old and were randomly allocated to three treatments, with CON (basal diet), LPS (basal diet + LPS), and BT-LPS (basal diet + 3.0 g/kg protected butyrate + LPS). On days 19 and 21, piglets in the LPS and BT-LPS groups were intraperitoneally challenged with LPS at 100 μg/kg body weight. Butyrate administration significantly decreased LPS-induced rise in the clinical score of piglets and colonic histological scores and reduced the susceptibility to LPS-induced severe inflammatory response by decreasing proinflammatory (IL-1β, IL-6, IL-8, and TNF-α) cytokines. Butyrate supplementation accelerated the prevalence of Faecalibacterium and Lactobacillus by enhancing the tricarboxylic acid (TCA) cycle of colonocytes. Dietary supplementation with protected butyrate significantly targeted increased concentrations of butyric acid in the colon and portal venous circulation, and enhanced the TCA cycle in the gut-liver axis by mobilizing amino acid and vitamin B group as a coenzyme. Meanwhile, during this progress, LPS increased fatty acid synthesis that was reversed by butyrate treatment, which was reflected by decreased acylcarnitines. Butyrate-reshaped colonic microbial community and metabolism in the gut-liver axis contributed to morphology integrity and immunity homeostasis by promoting anti-inflammatory (IL-10 and TGF-β) cytokines and suppressing inflammatory mediator hypoxia-inducible factor 1α and its downstream response elements cyclooxygenase 2 and inducible nitric oxide synthase. These results identified the pivotal role of colonic microbiota and metabolism in the gut-liver axis for alleviating inflammatory progression and possible therapeutic targets.
Collapse
Affiliation(s)
- Yunsheng Han
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Junmin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|