1
|
Oviedo-León JF, Cornejo-Mazón M, Ortiz-Hernández R, Torres-Ramírez N, Hernández-Sánchez H, Castro-Rodríguez DC. Exploration adhesion properties of Liquorilactobacillus and Lentilactobacillus isolated from two different sources of tepache kefir grains. PLoS One 2024; 19:e0297900. [PMID: 38324577 PMCID: PMC10849267 DOI: 10.1371/journal.pone.0297900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Due to the distinctive characteristics of probiotics, it is essential to pinpoint strains originating from diverse sources that prove efficacious in addressing a range of pathologies linked to dysfunction of the intestinal barrier. Nine strains of lactic acid bacteria were isolated from two different sources of tepache kefir grains (KAS2, KAS3, KAS4, KAS7, KAL4, KBS2, KBS3, KBL1 and KBL3), and were categorized to the genus Lacticaseibacillus, Liquorilactobacillus, and Lentilactobacillus by 16S rRNA gene. Kinetic behaviors of these strains were evaluated in MRS medium, and their probiotic potential was performed: resistance to low pH, tolerance to pepsin, pancreatin, bile salts, antibiotic resistance, hemolytic activity, and adhesion ability. KAS7 strain presented a higher growth rate (0.50 h-1) compared with KAS2 strain, who presented a lower growth rate (0.29 h-1). KBS2 strain was the only strain that survived the in vitro stomach simulation conditions (29.3%). Strain KBL1 demonstrated significantly higher viability (90.6%) in the in vitro intestine simulation conditions. Strain KAS2 demonstrated strong hydrophilic character with chloroform (85.6%) and xylol (57.6%) and a higher percentage of mucin adhesion (87.1%). However, strains KBS2 (84.8%) and KBL3 (89.5%) showed the highest autoaggregation values. In terms of adhesion to the intestinal epithelium in rats, strains KAS2, KAS3 and KAS4 showed values above 80%. The growth of the strains KAS2, KAS3, KAS4, KBS2, and KBL3 was inhibited by cefuroxime, cefotaxime, tetracycline, ampicillin, erythromycin, and cephalothin. Strains KBS2 (41.9% and 33.5%) and KBL3 (42.5% and 32.8%) had the highest co-aggregation values with S. aureus and E. coli. The results obtained in this study indicate that lactic acid bacteria isolated from tepache can be considered as candidates for potentially probiotic bacteria, laying the foundations to evaluate their probiotic functionality in vivo and thus to be used in the formulation of functional foods.
Collapse
Affiliation(s)
- Julián Fernando Oviedo-León
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Maribel Cornejo-Mazón
- Departamento Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Mexico City, Mexico
| | - Rosario Ortiz-Hernández
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Humberto Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Diana C. Castro-Rodríguez
- Investigadores CONAHCyT, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
2
|
Mohellebi N, Hamma-Faradji S, Bendjeddou K, Ait Meddour A, Benchikh Y, Bendali F, Belguesmia Y, Drider D. Biopreservation of Fresh Sardines ( Sardina pilchardus) Using Lactiplantibacillus plantarum OV50 Isolated from Traditional Algerian Green Olives Preparations. Foods 2024; 13:368. [PMID: 38338504 PMCID: PMC10855054 DOI: 10.3390/foods13030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Lactiplantibacillus plantarum OV50 is a novel strain that was isolated from Algerian olives. Prior to its use as a natural biopreservative, OV50 underwent characterization for various functions. OV50 shows no proteolytic, lipolytic, or hemolytic activity. In addition, it is non-cytotoxic to eukaryotic cells and does not exhibit acquired antibiotic resistance. OV50 was tested with Pseudomonas aeruginosa ATCC 27835, Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 8739, and Vibrio cholerae ATCC 14035 in a sardine based-medium at 37 °C and 7 °C. At 37 °C, OV50 completely inhibited the growth of these foodborne pathogens for a maximum of 6 h. At 7 °C, it suppressed their growth for a maximum of 8 days, except for S. aureus ATCC 6538, whose growth was reduced from 4 to 2 log CFU/mL. Microbiological counts, total volatile basic nitrogen (TVB-N), and peroxide values (PV) concentrations were determined in fresh sardines inoculated with OV50 and kept at 7 °C for 12 days. The inoculated sardines showed a significant reduction in TVB-N levels at D8 (34.9 mg/100 g) compared to the control (59.73 mg/100 g) and in PV concentrations at D4 (6.67 meq/kg) compared to the control (11.44 meq/kg), as well as a significant reduction in the numbers of Enterobacterales, Coliforms, Pseudomonas spp., Vibrio spp., and S. aureus At D8 and D12 compared to the control. Taken together, these results indicate that OV50 can improve the microbiological safety, freshness, and quality of sardines.
Collapse
Affiliation(s)
- Nassima Mohellebi
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, 06000 Bejaia, Algeria; (N.M.); (K.B.); (A.A.M.); (F.B.)
| | - Samia Hamma-Faradji
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, 06000 Bejaia, Algeria; (N.M.); (K.B.); (A.A.M.); (F.B.)
| | - Kamel Bendjeddou
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, 06000 Bejaia, Algeria; (N.M.); (K.B.); (A.A.M.); (F.B.)
| | - Amel Ait Meddour
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, 06000 Bejaia, Algeria; (N.M.); (K.B.); (A.A.M.); (F.B.)
| | - Yassine Benchikh
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000 Bejaia, Algeria;
- Laboratoire de Biotechnologie et Qualité des Aliments, Institut de la Nutrition, de l’Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Constantine 1 Frères Mentouri, 25000 Constantine, Algeria
| | - Farida Bendali
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Microbiologie Appliquée, 06000 Bejaia, Algeria; (N.M.); (K.B.); (A.A.M.); (F.B.)
| | - Yanath Belguesmia
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France;
| | - Djamel Drider
- Unité Mixte de Recherche (UMR) Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV—Institut Charles Viollette, 59000 Lille, France;
| |
Collapse
|
3
|
Zhou X, Du HH, Ni L, Ran J, Hu J, Yu J, Zhao X. Nicotinamide Mononucleotide Combined With Lactobacillus fermentum TKSN041 Reduces the Photoaging Damage in Murine Skin by Activating AMPK Signaling Pathway. Front Pharmacol 2021; 12:643089. [PMID: 33841160 PMCID: PMC8027253 DOI: 10.3389/fphar.2021.643089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Long-term exposure to UVB (280-320 nm) can cause oxidative skin damage, inflammatory injury, and skin cancer. Research on nicotinamide mononucleotide (NMN) and lactic acid bacteria (LAB) with regard to antioxidation, anti-inflammation, and prevention of other age-related diseases has received increasing attention. In the present study, the in vitro antioxidant analysis showed that NMN combined with Lactobacillus fermentum TKSN041 (L. fermentum TKSN041) has a high scavenging ability on hydroxyl (OH), 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt (ABTS) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and it also possess a good total antioxidant capacity. The animal experimental results show that NMN combined with LAB maintained normal liver morphology of mice and reduced pathological damage to murine skin. NMN combined with LAB significantly increased the serum levels of total superoxide dismutase (T-SOD), catalase (CAT), and interleukin (IL)-10, but reduced the levels of malondialdehyde, advanced glycation end products, tumor necrosis factor (TNF)-α, and IL-6. NMN combined with LAB increased T-SOD, CAT, IL-10, Na+-K+-ATPase, and NAD+ levels in the skin, but reduced TNF-α level in the skin. NMN combined with LAB increased the mRNA expression levels of SOD1, CAT, glutathione (GSH), inhibitor of NF-κB (IκB-α), IL-10, AMP-activated protein kinase (AMPK), adaptor protein, phosphotyros ineinteraction, PH domain and leucine zipper containing 1 (APPL1), peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α), and forkhead transcription factor O (FOXO) in the skin and liver, but decreased the mRNA expression levels of nuclear factor (NF)-κBp65, TNF-α, IL-6, and rapamycin target protein (mTOR). NMN combined with LAB increased the protein expression levels of AMPK, IκB-α, SOD1, and CAT in the skin tissues and reduced protein expression of NF-κBp65. NMN combined with L. fermentum TKSN041 improved murine skin damage caused by UVB irradiation, and the protective mechanism may be related to activation of the AMPK signaling pathway. The results of this study are expected to provide a reference for preventing and the treating skin photoaging.
Collapse
Affiliation(s)
- Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Hang-Hang Du
- Department of Plastic Surgery, Chongqing Huamei Plastic Surgery Hospital, Chongqing, China
| | - Luyao Ni
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Jie Ran
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Jian Hu
- Effepharm (Shanghai) Co., Ltd., Shanghai, China
| | - Jianjun Yu
- Effepharm (Shanghai) Co., Ltd., Shanghai, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|