1
|
Pierguidi L, Cecchi L, Dinnella C, Zanoni B, Spinelli S, Migliorini M, Monteleone E. Markers of sensory dynamics in phenols-rich virgin olive oils under optimal storage conditions. Food Res Int 2024; 187:114438. [PMID: 38763685 DOI: 10.1016/j.foodres.2024.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/13/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Early changes in sensory quality of phenols-rich virgin olive oil (VOO) and their relationship with the chemical changes are less studied in the literature. Therefore, the objective of this study was to propose a predictive model of dynamics of sensory changes based on specific chemical markers. The evolution of the sensory quality of phenol-rich VOOs from Tuscan cultivars stored under optimal storage conditions (i.e., absence of light, no O2 exposure, low temperature) was investigated using a multi-step methodological approach combining sensory (official sensory analysis (so-called Panel Test), Descriptive Analysis and Temporal Dominance of Sensation) and chemical measurements. The sensory map from descriptive data was related to the phenolic and volatile profiles, measured using HPLC-DAD and HS-SPME-GC-MS, respectively. A predictive model of the sensory changes over storage based on chemical compounds was developed. Results showed that very early changes involving phenolic and volatile compounds profiles occur in VOOs stored under optimal storage conditions, which turn in changes in sensory properties evaluated by the official panel test, the descriptive analysis and the temporal dominance of sensation. Furthermore, a chemical marker of sensory dynamics of oils during storage was identified as the ratio between two groups of secoiridoids. The proposed model, supported by the mentioned chemical marker, has the potential of improving the control of sensory changes in phenols-rich virgin olive oils during storage in optimal conditions.
Collapse
Affiliation(s)
- Lapo Pierguidi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy
| | - Lorenzo Cecchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy.
| | - Caterina Dinnella
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy
| | - Bruno Zanoni
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy
| | - Sara Spinelli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy
| | - Marzia Migliorini
- Carapelli Firenze S.p.A., Via Leonardo da Vinci 31, Tavarnelle Val di Pesa, 50028, Firenze, Italy
| | - Erminio Monteleone
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144, Florence, Italy
| |
Collapse
|
2
|
Stefanidis S, Ordoudi SA, Nenadis N, Pyrka I. Improving the functionality of virgin and cold-pressed edible vegetable oils: Oxidative stability, sensory acceptability and safety challenges. Food Res Int 2023; 174:113599. [PMID: 37986461 DOI: 10.1016/j.foodres.2023.113599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
In recent years, there has been a growing demand for minimally processed foods that offer health benefits and premium sensory characteristics. This trend has led to increased consumption of virgin (VOs) and cold-pressed (CPOs) oils, which are rich sources of bioactive substances. To meet consumer needs for new oil products conferring multi-functional properties over a longer storage period, the scientific community has been revisiting traditional enrichment practices while exploring novel fortification technologies. In the last four years, the interest has been growing faster; an ascending number of annually published studies are about the addition of different plant materials, agri-food by-products, or wastes (intact or extracts) to VOs and CPOs using traditional or innovative fortification processes. Considering this trend, the present review aims to provide an overview and summarize the key findings from relevant papers that were retrieved from extensively searched databases. Our meta-analysis focuses on exposing the most recent trends regarding the exploitation of VOs and CPOs as substrates, the fortification agents and their form of use, as well as the fortification technologies employed. The review critically discusses possible health claim and labeling issues and highlights some chemical and microbial safety concerns along with authenticity issues and gaps in quality specifications that manufacturers have yet to address. All these aspects are examined from the perspective of developing new oil products with well-balanced techno-, senso- and bio-functional characteristics.
Collapse
Affiliation(s)
- Stavros Stefanidis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Stella A Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
3
|
Frangipane MT, Cecchini M, Monarca D, Massantini R. Effects of Filtration Processes on the Quality of Extra-Virgin Olive Oil-Literature Update. Foods 2023; 12:2918. [PMID: 37569187 PMCID: PMC10417607 DOI: 10.3390/foods12152918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Filtration is a process that eliminates solid sediments and moisture in olive oil to maintain its shelf life during storage. The influence of filtration on the oil characteristics is linked to many parameters such as chemical and sensory traits, cultivars and filtration systems. After assessing the literature on filtration research, we observed that there are contrasting findings and it is complicated to answer the question of whether to filter or not. An analysis of the influence of different filtration technologies used in extra-virgin olive oil production on the phenolic compounds, volatile fractions, antioxidant activity and sensory characteristics is given in this review. The information compiled could help olive oil producers to enhance extra-virgin olive oil quality and maintain it during storage.
Collapse
Affiliation(s)
- Maria Teresa Frangipane
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy;
| | - Massimo Cecchini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (M.C.); (D.M.)
| | - Danilo Monarca
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; (M.C.); (D.M.)
| | - Riccardo Massantini
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy;
- Study Alpine Centre, Campus University of Tuscia, Via Rovigo, 738050 Rovigo, Italy
| |
Collapse
|
4
|
Cecchi L, Parenti A, Bellumori M, Migliorini M, Mulinacci N, Guerrini L. Clustering monovarietal extra virgin olive oil according to sensory profile, volatile compounds and
k
‐mean algorithm. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lorenzo Cecchi
- Department of NEUROFARBA University of Florence Via Ugo Schiff 6 Sesto F.no Florence 50019 Italy
| | - Alessandro Parenti
- Department of Agricultural Food and Forestry Systems Management (DAGRI) University of Florence Piazzale Delle Cascine 16 Florence 50144 Italy
| | - Maria Bellumori
- Department of NEUROFARBA University of Florence Via Ugo Schiff 6 Sesto F.no Florence 50019 Italy
| | - Marzia Migliorini
- Carapelli Firenze S.p.A. Via Leonardo da Vinci 31, Tavarnelle Val di Pesa Firenze 50028 Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA University of Florence Via Ugo Schiff 6 Sesto F.no Florence 50019 Italy
| | - Lorenzo Guerrini
- Dipartimento Territorio e Sistemi Agro‐Forestali (TESAF) Università degli Studi di Padova via dell'Università 16 PD Legnaro 35020 Italy
| |
Collapse
|
5
|
Angeloni G, Spadi A, Corti F, Guerrini L, Calamai L, Parenti A, Masella P. Investigation of the Effectiveness of a Vertical Centrifugation System Coupled with an Inert Gas Dosing Device to Produce Extra Virgin Olive Oil. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractRecent decades have seen the development of many effective and innovative technologies for extra virgin olive oil (EVOO) extraction. Various solutions have been proposed to remove dissolved oxygen from the oil. Given these issues, we have designed and developed a system that can be added to the centrifuges that are already used in the olive oil industry. The system reduces the oxidative impact through the release of a technical gas inside the separator, and consequently delays the onset of defects related to oxidation. The experiment tested different N2 flow rates, directly into the vertical centrifuge, and four levels of N2 were tested–a control level (no N2 injection); low (20 L/min), medium (40 L/min), and maximum (80 L/min)–in order to evaluate the effectiveness of this new technique on EVOO quality. This experiment demonstrates that the objectives have been achieved. The EVOO produced using our system had lower dissolved oxygen content with N2 injection, along with an enriched volatile fraction, and higher biophenol concentrations. The chemical analyses were confirmed by a sensory analysis, with an increase in fruity intensity and bitter taste.
Collapse
|
6
|
Carlotta B, Lorenzo G, Alessandro P, Piernicola M, Luca C, Lorenzo L, Bruno Z. Turbidity characterization as a decision-making tool for extra virgin olive oil stability treatments. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Cecchi L, Migliorini M, Giambanelli E, Canuti V, Bellumori M, Mulinacci N, Zanoni B. Exploitation of virgin olive oil by-products (Olea europaea L.): phenolic and volatile compounds transformations phenomena in fresh two-phase olive pomace ('alperujo') under different storage conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2515-2525. [PMID: 34676895 PMCID: PMC9298029 DOI: 10.1002/jsfa.11593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Much effort has recently been spent for re-using virgin olive oil by-products as nutraceutical ingredients for human diet thanks to their richness in bioactive phenols, but their management is not easy for producers. We aimed to provide useful information for a better management of fresh olive pomace before drying, by studying the phenolic and volatile compounds transformations phenomena of fresh olive pomace stored under different conditions planned to simulate controlled and uncontrolled temperature conditions in olive oil mills. RESULTS The evolution of the phenolic and volatile compounds was studied by high-performance liquid chromatography-diode array detector mass spectrometry (HPLC-DAD-MS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The phenolic profile varied rapidly during storage: the verbascoside content decreased about 70% after 17 days even at 4 °C, while the content of simple phenols such as hydroxytyrosol and caffeic acid increased over time. The low temperature was able to slow down these phenomena. A total of 94 volatile organic compounds (VOCs) were detected in the fresh olive pomace, with a prevalence of lipoxygenase (LOX) VOCs (78%), mainly aldehydes (19 490.9 μg kg-1 ) despite the higher number of alcohols. A decrease in LOX volatiles and a quick development of the ones linked to off-flavors (carboxylic acids, alcohols, acetates) were observed, in particular after 4 days of storage at room temperature. Only storage at 4 °C allowed these phenomena to be slowed down. CONCLUSION To preserve the natural phenolic phytocomplex of fresh olive pomace before drying and to avoid off-flavors development, storage in open containers must be avoided and a short storage in cold rooms (7-10 days) is to be preferred. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department of NEUROFARBAUniversity of FlorenceFlorenceItaly
| | | | | | - Valentina Canuti
- Department of AgriculturalFood and Forestry Systems Management (DAGRI), University of FlorenceFlorenceItaly
| | | | | | - Bruno Zanoni
- Department of AgriculturalFood and Forestry Systems Management (DAGRI), University of FlorenceFlorenceItaly
| |
Collapse
|
8
|
Zullo BA, Ciafardini G. Role of yeasts in the qualitative structuring of extra virgin olive oil. J Appl Microbiol 2022; 132:4033-4041. [PMID: 35137497 DOI: 10.1111/jam.15478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Abstract
This review sought to describe the role played by some components of the microbiota of extra virgin olive oil (EVOO), particularly yeasts, in structuring the physicochemical and sensorial quality of freshly produced olive oil. Yeasts can survive during the entire storage period of the product. To date, approximately 25 yeast species isolated from oil produced in more than six countries have been identified, eight of which are classified as new species. Some yeast species with probiotic traits improve the health qualities of oil, whereas many others improve the chemical composition and sensory characteristics based on β-glucosidase and esterase enzymes, which are involved in the hydrolysis of the bitter glucoside known as oleuropein. However, some species, which are typically favored by the high water content in the oily matrix, such as lipase-producing yeasts, can worsen the initial chemical characteristics of EVOO oil during storage. Some physical treatments that are compatible with the EVOO production specification affect the biotic component of the oil by reducing the concentration of yeasts. The possibility of minimizing the invasive action on the biotic component of the oil by appropriately selecting the physical treatment for each oil is discussed.
Collapse
Affiliation(s)
- B A Zullo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - G Ciafardini
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
9
|
Effects of the Filtration on the Biotic Fraction of Extra Virgin Olive Oil. Foods 2021; 10:foods10081677. [PMID: 34441455 PMCID: PMC8393934 DOI: 10.3390/foods10081677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Filtration is a widely used process in the production of extra virgin olive oil. We studied the influence of filtration performed with cotton filters and cellulose filter press on the biotic components of the oily mass containing probiotic traits in two freshly produced monocultivar extra virgin olive oils. The concentration of bacteria was reduced from 100% to 28%, while that of fungi was reduced from 100% to 44% after filtration, according to the filtration system and the initial contamination of the original monocultivar extra virgin olive oil. Compared with the control, the yeast content in the oil samples filtered with cotton filters was reduced from 37% to 11% depending on the cultivar. In the oil filtered with cellulose filter press, the yeast content reduced from 42% to 16%. The viable yeast that passed through the oily mass during the filtration process with cellulose filter press, unlike all the other samples, were unable to survive in the oil after a month of storage. The possible health benefits of compounds from both the biotic and abiotic fraction of the oil, compared to the control, were significantly low when filtered with the cellulose filter press.
Collapse
|
10
|
Cecchi L, Migliorini M, Giambanelli E, Cane A, Mulinacci N, Zanoni B. Volatile Profile of Two-Phase Olive Pomace (Alperujo) by HS-SPME-GC-MS as a Key to Defining Volatile Markers of Sensory Defects Caused by Biological Phenomena in Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5155-5166. [PMID: 33902289 PMCID: PMC8278492 DOI: 10.1021/acs.jafc.1c01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
An olive pomace from the two-phase decanter stored in different conditions was used as a model to simulate the detrimental biological phenomena occurring during olive oil processing and storage. A group of EVOO and defective oils were also analyzed. The volatile fraction was studied with HS-SPME-GC-MS; 127 volatiles were identified (55 of which tentatively identified) and evaluated over time. Seven volatiles were tentatively identified for the first time in olive oil; the role of C6 alcohols in detrimental biological phenomena was highlighted. Suitable volatile markers for defects of microbiological origin were defined, particularly the fusty/muddy sediment. They were then applied to olive oils with different quality categories; one of the markers was able to discriminate among EVOOs and all the defective samples, including the borderline ones. The marker was constituted by the sum of concentrations of 10 esters, 4 alcohols, 1 ketone, and 1 α-hydroxy-ketone but no carboxylic acids.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department
of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Marzia Migliorini
- Carapelli
Firenze S.p.A., Via Leonardo
da Vinci 31, Tavarnelle Val di Pesa, 50028 Firenze, Italy
| | - Elisa Giambanelli
- Carapelli
Firenze S.p.A., Via Leonardo
da Vinci 31, Tavarnelle Val di Pesa, 50028 Firenze, Italy
| | - Anna Cane
- Carapelli
Firenze S.p.A., Via Leonardo
da Vinci 31, Tavarnelle Val di Pesa, 50028 Firenze, Italy
| | - Nadia Mulinacci
- Department
of NEUROFARBA, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Bruno Zanoni
- Department
of Agricultural, Food and Forestry Systems Management (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, Italy
| |
Collapse
|
11
|
Cecchi L, Migliorini M, Mulinacci N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2013-2040. [PMID: 33591203 DOI: 10.1021/acs.jafc.0c07744] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds strongly contribute to both the positive and negative sensory attributes of virgin olive oil, and more and more studies have been published in recent years focusing on several aspects regarding these molecules. This Review is aimed at giving an overview on the state of the art about the virgin olive oil volatile compounds. Particular emphasis was given to the composition of the volatile fraction, the analytical issues and approaches for analysis, the sensory characteristics and interaction with phenolic compounds, and the approaches for supporting the Panel Test in virgin olive oil classification and in authentication of the botanical and geographic origin based on volatile compounds. A pair of detailed tables with a total of approximately 700 volatiles identified or tentatively identified to date and tables dealing with analytical procedures, sensory characteristics of volatiles, and specific chemometric approaches for quality assessment are also provided.
Collapse
Affiliation(s)
- Lorenzo Cecchi
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| | - Marzia Migliorini
- Carapelli Firenze S.p.A., Via Leonardo da Vinci 31, 50028 Tavarnelle Val di Pesa, Florence, Italy
| | - Nadia Mulinacci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto F.no, Florence, Italy
| |
Collapse
|