1
|
Qin X, Wei Q, An R, Yang Y, Cai M, Han X, Mao H, Gao X. Regulation of bone and fat balance by Fructus Ligustri Lucidi in ovariectomized mice. PHARMACEUTICAL BIOLOGY 2023; 61:391-403. [PMID: 36740874 PMCID: PMC9904306 DOI: 10.1080/13880209.2023.2168019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 12/03/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Fructus Ligustri Lucidi (FLL), a commonly used herb of traditional Chinese medicine (TCM), is the fruit of Ligustrum lucidum Ait. (Oleaceae). The ethanol extract of FLL is a potential candidate for preventing and treating postmenopausal osteoporosis (PMOP) by nourishing the liver and kidneys. OBJECTIVE This study determines whether an ethanol extract of FLL has anti-osteoporotic effects in ovariectomized (OVX) mice and explores the underlying mechanism. MATERIALS AND METHODS The OVX model of eight-week-old C57BL/6J female mice was taken, and ovariectomy was used as PMOP. Mice were divided into five groups: sham-operated group (n = 10), OVX group (n = 10), OVX + E2 group (n = 10; 0.039 mg/kg), OVX + FLL group (n = 10; 2 g/kg) and OVX + FLL group (n = 10; 4 g/kg). Mice were treated by gavage with FLL or CMCNa once daily for 8 weeks. We harvested uteri, femur, and tibias from mice; bone mineral density (BMD) and bone microstructure were obtained by X-ray absorptiometry and micro-CT. Furthermore, the effect of FLL on the balance of osteoblast and adipocyte differentiation was investigated using bone marrow mesenchymal stem cells (BMMSCs). RESULTS The results indicated that FLL did not affect OVX-induced estradiol reduction. Compared with OVX mice, FLL significantly increased BMD (63.54 vs. 61.96), Conn. D (86.46 vs. 57.00), and left tibial strength (13.91 vs. 11.27), decreased Tb. Sp (0.38 vs. 0.44) and body fat content (4.19% vs. 11.24%). FLL decreased osteoclast activity and enhanced RUNX2 expression; inhibited perilipin peroxisome proliferator-activated receptor gamma (PPARγ) expression and adipocyte differentiation from BMMSCs. CONCLUSIONS FLL prevented additional bone loss and improved bone microstructure in OVX mice by modulating bone and fat balance, suggesting that FLL might be a therapeutic agent for PMOP.
Collapse
Affiliation(s)
- Xiaoyan Qin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiu Wei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ran An
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Yang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingqi Cai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoling Han
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoping Mao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Nechita MA, Toiu A, Benedec D, Hanganu D, Ielciu I, Oniga O, Nechita VI, Oniga I. Agastache Species: A Comprehensive Review on Phytochemical Composition and Therapeutic Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2937. [PMID: 37631149 PMCID: PMC10459224 DOI: 10.3390/plants12162937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
The Agastache genus is part of the Lamiaceae family and is native to North America, while one species, Agastache rugosa (A. rugosa), is native to East Asia. A review on the phytochemistry and bioactivity of Agastache genus was last performed in 2014. Since then, a lot of progress has been made on the characterization of the phytochemical and pharmacological profiles of Agastache species. Thus, the purpose of this paper is to present a summary of the findings on the phytochemistry and biological effects of several Agastache species, including both extracts and essential oil characterization. We performed a comprehensive search using PubMed and Scopus databases, following PRISMA criteria regarding the study selection process. The available data is focused mainly on the description of the chemical composition and bioactivity of A. rugosa, with fewer reports referring to Agastache mexicana (A. mexicana) and Agastache foeniculum (A. foeniculum). Agastache species are characterized by the dominance of flavonoids and phenolic acids, as well as volatile compounds, particularly phenylpropanoids and monoterpenes. Moreover, a series of pharmacological effects, including antioxidant, cytotoxic, antimicrobial, anti-atherosclerotic, and cardioprotective properties, have been reported for species from the Agastache genus.
Collapse
Affiliation(s)
- Mihaela-Ancuța Nechita
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Anca Toiu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania
| | - Vlad-Ionuț Nechita
- Department of Medical Informatics and Biostatistics, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Do TMH, Choi M, Kim JK, Kim YJ, Park C, Park CH, Park NI, Kim C, Sathasivam R, Park SU. Impact of Light and Dark Treatment on Phenylpropanoid Pathway Genes, Primary and Secondary Metabolites in Agastache rugosa Transgenic Hairy Root Cultures by Overexpressing Arabidopsis Transcription Factor AtMYB12. Life (Basel) 2023; 13:life13041042. [PMID: 37109572 PMCID: PMC10142052 DOI: 10.3390/life13041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Agastache rugosa, otherwise called Korean mint, has a wide range of medicinal benefits. In addition, it is a rich source of several medicinally valuable compounds such as acacetin, tilianin, and some phenolic compounds. The present study aimed to investigate how the Tartary buckwheat transcription factor AtMYB12 increased the primary and secondary metabolites in Korean mint hairy roots cultured under light and dark conditions. A total of 50 metabolites were detected by using high-performance liquid chromatography (HPLC) and gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). The result showed that the AtMYB12 transcription factor upregulated the phenylpropanoid biosynthesis pathway genes, which leads to the highest accumulation of primary and secondary metabolites in the AtMYB12-overexpressing hairy root lines (transgenic) than that of the GUS-overexpressing hairy root line (control) when grown under the light and dark conditions. However, when the transgenic hairy root lines were grown under dark conditions, the phenolic and flavone content was not significantly different from that of the control hairy root lines. Similarly, the heat map and hierarchical clustering analysis (HCA) result showed that most of the metabolites were significantly abundant in the transgenic hairy root cultures grown under light conditions. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) showed that the identified metabolites were separated far based on the primary and secondary metabolite contents present in the control and transgenic hairy root lines grown under light and dark conditions. Metabolic pathway analysis of the detected metabolites showed 54 pathways were identified, among these 30 were found to be affected. From these results, the AtMYB12 transcription factor activity might be light-responsive in the transgenic hairy root cultures, triggering the activation of the primary and secondary metabolic pathways in Korean mint.
Collapse
Affiliation(s)
- Thi Minh Hanh Do
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Minsol Choi
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Ye Jin Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Chanung Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Nam Il Park
- Division of Plant Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Republic of Korea
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Un Park
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze. Foods 2023; 12:foods12030573. [PMID: 36766102 PMCID: PMC9914411 DOI: 10.3390/foods12030573] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
The aerial parts of Agastache rugosa are used as a food material and traditional medicine in Asia. A 50% ethanol extract exhibited potent xanthine oxidase (XO) inhibitory activity (IC50 = 32.4 µg/mL). To investigate the major components responsible for this effect, seven known compounds were identified from A. rugosa; among these, salvianolic acid B (2) was isolated from this plant for the first time. Moreover, acacetin (7) exhibited the most potent inhibitory activity with an IC50 value of 0.58 µM, lower than that of allopurinol (IC50 = 4.2 µM), which is commonly used as a XO inhibitor. Comparative activity screening revealed that the C6-bonded monosaccharides (3) or sugars substituted with acetyl or malonyl groups (4-6) are critical for XO inhibition when converted to aglycone (7). The most potent inhibitor (7) in the A. rugosa extract (ARE) exhibited mixed-type inhibition kinetics and reversible inhibition toward XO. Furthermore, the hydrolysis of ARE almost converted to an inhibitor (7), which displayed the highest efficacy; UPLC-qTof MS revealed an increased content, up to five times more compared with that before treatment. This study will contribute to the enhancement in the industrial value of ARE hydrolysates as a functional ingredient and natural drug toward the management of hyperuricemia and treatment of gout.
Collapse
|
5
|
Nan L, Nam HH, Choo BK. Agastache rugosa inhibits LPS-induced by RAW264.7 cellular inflammation and ameliorates oesophageal tissue damage from acute reflux esophagitis in rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Lee B, Kim CY. Dietary Bioactive Compounds and Health. Foods 2022; 11:foods11162395. [PMID: 36010394 PMCID: PMC9407314 DOI: 10.3390/foods11162395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Nam-gu, Daeyeon-dong, Busan 608737, Korea
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: ; Tel.: +82-53-810-2871
| |
Collapse
|
7
|
Yan Q, Cai L, Guo W. New Advances in Improving Bone Health Based on Specific Gut Microbiota. Front Cell Infect Microbiol 2022; 12:821429. [PMID: 35860378 PMCID: PMC9289272 DOI: 10.3389/fcimb.2022.821429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/01/2022] [Indexed: 12/31/2022] Open
Abstract
The gut microbiota has been shown to play an important role in the pathogenesis of various diseases, including metabolic diseases, cardiovascular diseases, and cancer. Recent studies suggest that the gut microbiota is also closely associated with bone metabolism. However, given the high diversity of the gut microbiota, the effects of different taxa and compositions on bone are poorly understood. Previous studies demonstrated that the mechanisms underlying the effects of the gut microbiota on bone mainly include its modulation of nutrient absorption, intestinal permeability, metabolites (such as short-chain amino acids), immune responses, and hormones or neurotransmitters (such as 5-hydroxytryptamine). Several studies found that external interventions, such as dietary changes, improved bone health and altered the composition of the gut microbiota. This review summarises the beneficial gut bacteria and explores how dietary, natural, and physical factors alter the diversity and composition of the gut microbiota to improve bone health, thereby providing potential new insight into the prevention of osteoporosis.
Collapse
|
8
|
Holistic quality evaluation of commercial Agastache rugosa by multiple chromatographic and chemometric analysis. J Pharm Biomed Anal 2022; 210:114574. [PMID: 34999432 DOI: 10.1016/j.jpba.2021.114574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
In present study, a comprehensive strategy integrating multiple chromatographic and chemometric methods to simultaneously characterize the volatile and non-volatile components was developed for the holistic quality evaluation of commercial Agastache rugosa (AR), a common edible and medicinal herb, collected in China. The volatile components and the non-volatile components were characterized by GC-MS and UPLC-QTOF-MS/MS, respectively. And the data were analyzed either independently or integratively by multivariate statistical analysis (MVS) for the quality assessment of commercial samples. The results revealed that the commercial AR samples were different in both the composition and the content of volatile components. However, the compositions of non-volatile components in commercial AR were generally similar, whereas the contents of some components were different. All the results indicated that the holistic quality of commercial AR was inconsistent, and the commercial samples collected could be classified into two main groups, the volatile components were majorly responsible for the classification. Whether or not the holistic quality variations affect the efficacy of AR deserves further investigation.
Collapse
|
9
|
Hong S, Cha KH, Kwon DY, Son YJ, Kim SM, Choi JH, Yoo G, Nho CW. Agastache rugosa ethanol extract suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153517. [PMID: 33626428 DOI: 10.1016/j.phymed.2021.153517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE Osteoporosis is a metabolic skeletal disease characterized by bone loss and an increased risk of fractures. This study aimed to investigate the therapeutic effect of Agastache rugosa on postmenopausal osteoporosis and elucidate its mechanisms in modulating the bone status. METHODS AND RESULTS In the osteoblast differentiation process with MC3T3-E1 pre-osteoblasts, ethanol extract of Agastache rugosa (EEAR) and its compounds increased the expression of the proteins and genes of the osteoblast differentiation-related markers such as Runt-related transcription factor 2 (RUNX2) and β-catenin along with the elevation of calcium deposits. An ovariectomized mouse model was utilized to determine the impact of EEAR extract on postmenopausal osteoporosis. Twelve weeks of AR treatment suppressed the loss of bone strength, which was observed through micro-computed tomography. AR elevated osteogenic markers in the bone marrow cells, and collagen type 1 alpha 1 in the distal femoral bone. The results of the 16S rRNA gene sequencing analysis of cecal gut microbiomes demonstrated that AR reversed the ovariectomy-induced changes in the gut microbiomes. CONCLUSION Ethanol extract of Agastache rugosa has a therapeutic effect on postmenopausal osteoporosis via bone morphogenic protein, transforming growth factor β, and Wnt signaling pathway. It also increases the diversity of gut microbiota. Therefore, these data suggest that EEAR could be a potential candidate to treat postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Soyeon Hong
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Graduate School Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do 25451, Republic of Korea
| | - Do Yeon Kwon
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Republic of Korea
| | - Yang Ju Son
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Republic of Korea
| | - Sang Min Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Republic of Korea
| | - Jung-Hye Choi
- KHU-KIST Department of Converging Science and Technology, Graduate School Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Gyhye Yoo
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Republic of Korea.
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Republic of Korea.
| |
Collapse
|