Soezi M, Piri-Gavgani S, Ghanei M, Omrani MD, Soltanmohammadi B, Bagheri KP, Cohan RA, Vaziri F, Siadat SD, Fateh A, Khatami S, Azizi M, Rahimi-Jamnani F. Identification of a novel fully human anti-toxic shock syndrome toxin (TSST)-1 single-chain variable fragment antibody averting TSST-1-induced mitogenesis and cytokine secretion.
BMC Biotechnol 2022;
22:31. [PMID:
36307814 PMCID:
PMC9617332 DOI:
10.1186/s12896-022-00760-8]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Background
Staphylococcal superantigens are virulence factors that help the pathogen escape the immune system and develop an infection. Toxic shock syndrome toxin (TSST)-1 is one of the most studied superantigens whose role in toxic shock syndrome and some particular disorders have been demonstrated. Inhibiting TSST-1 production with antibiotics and targeting TSST-1 with monoclonal antibodies might be one of the best strategies to prevent TSST-1-induced cytokines storm followed by lethality.
Results
A novel single-chain variable fragment (scFv), MS473, against TSST-1 was identified by selecting an scFv phage library on the TSST-1 protein. The MS473 scFv showed high affinity and specificity for TSST-1. Moreover, MS473 could significantly prevent TSST-1-induced mitogenicity (the IC50 value: 1.5 µM) and cytokine production.
Conclusion
Using traditional antibiotics with an anti-TSST-1 scFv as a safe and effective agent leads to deleting the infection source and preventing the detrimental effects of the toxin disseminated into the whole body.
Supplementary information
The online version contains supplementary material available at 10.1186/s12896-022-00760-8.
Collapse