1
|
Gao J, Cheng S, Zeng X, Sun X, Bai Y, Hu S, Yue J, Yu X, Zhang M, Xu X, Han M. Effects of contact ultrasound coupled with infrared radiation on drying kinetics, water migration and physical properties of beef during hot air drying. ULTRASONICS SONOCHEMISTRY 2024; 108:106978. [PMID: 38971086 PMCID: PMC11279329 DOI: 10.1016/j.ultsonch.2024.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Drying, as a critical step in the production of air-dried beef, has a direct impact on the quality of the final product. Innovatively, a composite system incorporating contact ultrasound (CU) and infrared radiation (IR) as auxiliary measures within a hot air drying (HAD) framework was built in this research, and the effects of these techniques on the drying kinetics, protein denaturation, and moisture transformation of air-dried beef were investigated. In comparison to HAD treatment, the integrated CU and IR (CU-IRD) system displayed marked enhancements in heat and moisture transport efficiency, thereby saving 36.84% of time expenditure and contributing favorably to the improved moisture distribution of the end-product. This was mainly ascribed to the denaturation of myosin induced by IR thermal effect and the micro-channel produced by CU sponge effect, thus increasing T2 relaxation time and the proportion of free water. In conclusion, the composite system solved the problem of surface hardening and reduces hardness and chewiness of air-dried beef by 40.42% and 45.25% respectively, but inevitably increased the energy burden by 41.60%.
Collapse
Affiliation(s)
- Jiahua Gao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyu Cheng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianming Zeng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomei Sun
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Bai
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Songmei Hu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianping Yue
- Emin County Xinda Tongchuang Bioengineering Co., Ltd., Tacheng 834600, China
| | - Xiaobo Yu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Minwei Zhang
- Guangdong Testing Institute of Product Quality Supervision, Shunde 528300, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Minyi Han
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; Wens Foodstuff Group Co., Ltd., Yunfu 527400, China.
| |
Collapse
|
2
|
Misu GA, Canja CM, Lupu M, Matei F. Advances and Drawbacks of Sous-Vide Technique-A Critical Review. Foods 2024; 13:2217. [PMID: 39063301 PMCID: PMC11275468 DOI: 10.3390/foods13142217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The sous-vide (SV) technique, notable for its precision and ability to preserve food quality, has become a transformative method in culinary arts. This review examines the technical aspects, applications, and limitations of SV, focusing on its impact on food safety, nutritional retention, and quality parameters across various food matrices such as meats, seafood, vegetables, and semi-prepared products. Through an extensive literature review, the study highlights the use of natural inhibitors and essential oils to enhance microbial safety and explores the nutritional benefits of SV in preserving vitamins and minerals. The findings suggest that while SV offers significant benefits in terms of consistent results and extended shelf life, challenges remain in terms of equipment costs and the necessity for specific training, and although sufficient for food preparation/processing, its effectiveness in eliminating microbial pathogens, including viruses, parasites, and vegetative and spore forms of bacteria, is limited. Overall, the research underscores SV's adaptability and potential for culinary innovation, aligning with modern demands for food safety, quality, and nutritional integrity.
Collapse
Affiliation(s)
- Georgiana Ancuta Misu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, District 1, 011464 Bucharest, Romania; (G.A.M.); (F.M.)
- Faculty of Food Industry and Tourism, Transilvania University of Brașov, 148 Castelului St., 500014 Brasov, Romania;
| | - Cristina Maria Canja
- Faculty of Food Industry and Tourism, Transilvania University of Brașov, 148 Castelului St., 500014 Brasov, Romania;
| | - Mirabela Lupu
- Faculty of Food Industry and Tourism, Transilvania University of Brașov, 148 Castelului St., 500014 Brasov, Romania;
| | - Florentina Matei
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Boulevard, District 1, 011464 Bucharest, Romania; (G.A.M.); (F.M.)
- Faculty of Food Industry and Tourism, Transilvania University of Brașov, 148 Castelului St., 500014 Brasov, Romania;
| |
Collapse
|
3
|
Kang KM, Kim HY. Effects of Sous-vide Cooking Temperature on Triceps Brachii of Black Goats. Food Sci Anim Resour 2024; 44:861-872. [PMID: 38974722 PMCID: PMC11222698 DOI: 10.5851/kosfa.2024.e23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 07/09/2024] Open
Abstract
The aim of this study was to determine the effects of sous-vide cooking temperature on the triceps brachii of black goats. Triceps brachii of black goats (12 months) were sous-vide cooked at 55°C, 60°C, and 65°C. The samples were examined for color, scanning electron microscope photographs, sarcomere length, fiber cross-sectional area, cooking yield, shear force, sensory evaluation, and aromatic profile. The results showed that CIE a*, CIE b*, and chroma increased with increasing sous-vide cooking temperature. However, the cooking yield significantly decreased with increasing sous-vide cooking temperature, and the shear forces of the 60°C and 65°C samples showed no significant differences. For sensory evaluation, the 60°C sample showed the highest scores for flavor, texture, and off-flavor. Furthermore, the 60°C sample showed the significantly lowest value of octadienone (aroma characteristics of metallic) intensity (p<0.05). Therefore, sous-vide cooking of triceps brachii of black goats at 60°C is effective in reducing off-flavor and improving tenderness.
Collapse
Affiliation(s)
- Kyu-Min Kang
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute,
Kongju National University, Yesan 32439, Korea
| |
Collapse
|
4
|
Jeneske HJ, Chun CKY, Koulicoff LA, Hene SR, Vipham J, O'Quinn TG, Zumbaugh MD, Chao MD. Effect of accelerated aging on shelf-stability, product loss, sensory and biochemical characteristics in 2 lower quality beef cuts. Meat Sci 2024; 213:109513. [PMID: 38608338 DOI: 10.1016/j.meatsci.2024.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The aim of this study was to determine the impact of accelerated aging (AA) on shelf stability, product loss, sensory and biochemical characteristics of 2 lower quality beef cuts. Triceps brachii (TB) and semimembranosus (SM) were collected and fabricated from 10 USDA Choice beef carcasses and assigned to 1 of 6 treatments: 3 d cooler aged (control), 21 d cooler aged, AA 49 °C for 2 h, AA 49 °C for 3 h, AA 54 °C for 2 h, and AA 54 °C for 3 h. The results showed that AA can decrease APC counts on steak surface and in purge and redness, but increase lightness and product loss of the steaks (P < 0.01). Lower shear force was also found for AA steaks compared to those from the control (P < 0.01), with the AA 54 °C treatments being comparable to 21 d cooler aging. However, the trained sensory panel determined AA steaks were less juicy and flavorful than those from the control and 21 d cooler aged samples (P < 0.05). There was no off-flavor detected in AA steaks though lipid oxidation was higher in AA samples than those in the control steaks (P < 0.01). The AA treatments stimulated cathepsin activity (P < 0.05), which may have enhanced the solubilization of stromal proteins and led to a different troponin-T degradation pattern compared to those from the 21 d aged samples (P < 0.01). Although AA is an economical and time-efficient method to increase tenderness of lower-quality beef cuts, further research is needed to determine strategies to mitigate the decrease in juiciness from AA treatments.
Collapse
Affiliation(s)
- Haley J Jeneske
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Colin K Y Chun
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Larissa A Koulicoff
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Sara R Hene
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Jessie Vipham
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Travis G O'Quinn
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Morgan D Zumbaugh
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Michael D Chao
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA.
| |
Collapse
|
5
|
Sujiwo J, Lee S, Kim D, Lee HJ, Oh S, Jung Y, Jang A. Physicochemical Features and Volatile Organic Compounds of Horse Loin Subjected to Sous-Vide Cooking. Foods 2024; 13:280. [PMID: 38254581 PMCID: PMC10814590 DOI: 10.3390/foods13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The purpose of this study was to evaluate the effect of temperature and time of sous-vide cooking method on the characteristics of Thoroughbred horse loin. Sliced portions (200 ± 50 g) were cooked by boiling (control) and sous-vide (65 and 70 °C for 12, 18, and 24 h). The samples were analyzed for proximate composition, pH, color, texture, microstructure, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), microbiology, volatile organic compounds (VOCs), nucleotide content, and fatty acids composition. The color analysis showed decreased redness at elevated temperatures. Improved tenderness, demonstrated by reduced shear force values (36.36 N at 65 °C for 24 h and 35.70 N at 70 °C for 24 h). The micrographs indicated dense fiber arrangements at 70 °C. The SDS-PAGE revealed muscle protein degradation with extended sous-vide cooking. The VOC analysis identified specific compounds, potentially distinctive markers for sous-vide cooking of horse meat including 1-octen-3-ol, decanal, n-caproic acid vinyl ester, cyclotetrasiloxane, octamethyl, and 3,3-dimethyl-1,2-epoxybutane. This study highlights the cooking time's primary role in sous vide-cooked horse meat tenderness and proposes specific VOCs as potential markers. Further research should explore the exclusivity of these VOCs to sous-vide cooking.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aera Jang
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.S.); (S.L.); (D.K.); (H.-J.L.); (S.O.); (Y.J.)
| |
Collapse
|
6
|
Xu B, Zhang Q, Zhang Y, Yang X, Mao Y, Luo X, Hopkins DL, Niu L, Liang R. Sous vide cooking improved the physicochemical parameters of hot-boned bovine semimembranosus muscles. Meat Sci 2023; 206:109326. [PMID: 37774478 DOI: 10.1016/j.meatsci.2023.109326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023]
Abstract
The physicochemical parameters of hot-boned bovine semimembranosus muscles after sous vide cooking were investigated. Hot-boned or wet-aged steaks were collected, and cooked by different cooking methods, including sous vide (57 °C, 11 h, SV), grilling (at 200 °C to the central temperature of 72 °C, GR) or boiling (100 °C, 2 h, BO). The meat color, tenderness, water-holding capacity, degree of oxidation, myoglobin denaturation and sensory quality traits were determined, as well as the changes in the microstructure. Compared to other cooking methods, SV reduced the degree of oxidation and muscle shortening, and significantly improved the water holding capacity (WHC), tenderness, connective tissue content and overall acceptability for both hot-boned and wet-aged steaks. The oxidation and muscle shortening were reduced in hot-boned SV steaks (P < 0.05), and the water-holding capacity and sensory scores for juiciness, connective tissue content and overall acceptability were increased (P < 0.05) compared to the wet-aged steaks. The combination of hot-boning and SV cooking resulted in an acceptable tenderness, better overall sensory acceptability and higher WHC than other combinations of muscle states and cooking methods. Therefore, it is a good choice to cook hot-boned semimembranosus muscles using SV to improve the eating quality, which can eliminate the need for aging, benefiting the beef industry.
Collapse
Affiliation(s)
- Baochen Xu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Qingwei Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | | | - Lebao Niu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
7
|
Latoch A, Moczkowska-Wyrwisz M, Sałek P, Czarniecka-Skubina E. Effect of Marinating in Dairy-Fermented Products and Sous-Vide Cooking on the Protein Profile and Sensory Quality of Pork Longissimus Muscle. Foods 2023; 12:3257. [PMID: 37685190 PMCID: PMC10486606 DOI: 10.3390/foods12173257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of the study was to evaluate the effect of marinating (3 or 6 days) in kefir (KE), yogurt (YO) and buttermilk (BM) and sous-vide cooking (SV) at 60 or 80 °C on changes in the protein profile of pork in relation to its sensory quality. In the marinated raw meat, an increased share of some fractions of myofibrillar and cytoskeletal proteins and calpains were found. The greatest degradation of proteins, regardless of time, was caused by marinating in YO and KE and cooking SV at 80 °C. The lowest processing losses were in samples marinated in KE and YO and cooked SV at 60 °C, with marinating time having no significant effect. The odor, flavor, tenderness and juiciness of meat marinated in BM was better than in KE and YO. Meat marinated and cooked SV at 60 °C was rated better by the panelists. Changes in proteins significantly affect the formation of meat texture, tenderness and juiciness, which confirms the correlations. This is also reflected in the sensory evaluation. During the process of marinating and cooking meat, protein degradation should be taken into account, which can be a good tool for shaping the sensory quality of cooked pork.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Moczkowska-Wyrwisz
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Piotr Sałek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 02-787 Warsaw, Poland; (M.M.-W.); (P.S.); (E.C.-S.)
| |
Collapse
|
8
|
Latoch A, Głuchowski A, Czarniecka-Skubina E. Sous-Vide as an Alternative Method of Cooking to Improve the Quality of Meat: A Review. Foods 2023; 12:3110. [PMID: 37628109 PMCID: PMC10453940 DOI: 10.3390/foods12163110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Sous-vide (SV) is a method of cooking previously vacuum-packed raw materials under strictly controlled conditions of time and temperature. Over the past few years, scientific articles have explored the physical, biochemical, and microbiological properties of SV cooking. In this review, we provide a critical appraisal of SV as an alternative method of meat cooking, including the types of methods, types of SV meat products, and effects of SV parameters on the meat quality and the mechanisms of transformation taking place in meat during SV cooking. Based on the available data, it can be concluded that most research on the SV method refers to poultry. The yield of the process depends on the meat type and characteristics, and decreases with increasing temperature, while time duration does not have an impact. Appropriate temperatures in this method make it possible to control the changes in products and affect their sensory quality. Vacuum conditions are given a minor role, but they are important during storage. The limited number of studies on the approximate composition of SV meat products makes it challenging to draw summarizing conclusions on this subject. The SV method allows for a higher microbiological quality of stored meat than conventional methods. The literature suggests that the SV method of preparing beef, pork, and poultry has many advantages.
Collapse
Affiliation(s)
- Agnieszka Latoch
- Department of Animal Food Technology, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Artur Głuchowski
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Ewa Czarniecka-Skubina
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| |
Collapse
|
9
|
Chang YS, Chen JW, Wu YHS, Wang SY, Chen YC. A possible systematic culinary approach for spent duck meat: Sous-vide cuisine and its optimal cooking condition. Poult Sci 2023; 102:102636. [PMID: 37011468 PMCID: PMC10090711 DOI: 10.1016/j.psj.2023.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
This study offered a possible systematic culinary approach to spent-laying ducks. Breast meat is suitable for processing due to its amount and completeness. Sous-vide cooking resulted in lower cooking loss than poaching, pan-frying (P < 0.05), and roasting. The sous-vide duck breast had higher gumminess, chewiness, and resilience than other culinary techniques (P < 0.05). Sous-vide cooking at 65°C had a lower cooking loss than 70°C (P < 0.05), and less than 1.5-h sous-vide could keep a lower cooking loss and WB shear value (P < 0.05) as the cooking period extended, the smaller (P < 0.05) quantity of myosin heavy chain and the destroyed sarcomere arrangement were observed. A condition at 65°C for 1.5 h could be the optimal sous-vide cuisine for spent-laying duck breast. These sous-vide products stored at 4°C were still safe for consumption due to no detectible microorganisms and unchangeable physicochemical properties within 7 d.
Collapse
Affiliation(s)
- Yu-Shan Chang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Jr-Wei Chen
- Department of Animal Industry, Council of Agriculture, Executive Yuan, Taipei 100, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Sheng-Yao Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan; The Master Program in Global Agriculture Technology and Genomic Sciences, International College, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
10
|
Yang Z, Cai J, Boateng EF, Xing L, Zhang W. Insight into Antioxidant Activity and Peptide Profile of Jinhua Ham Broth Peptides at Different Cooking Times. Antioxidants (Basel) 2023; 12:antiox12030606. [PMID: 36978854 PMCID: PMC10045146 DOI: 10.3390/antiox12030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
This present study aimed to investigate the effects of various cooking times (1 h, 1.5 h, 2 h, 2.5 h, named as JHBP-1, JHBP-1.5, JHBP-2, JHBP-2.5) on the antioxidant activity and peptide profile of Jinhua ham broth peptides (JHBP). The peptides extracted from uncooked ham were used as an uncooked group with the name of JHBP-0. The results revealed that the antioxidant efficacy in the four cooked groups changed dramatically compared to JHBP-0. After cooking, the DPPH radical scavenging activity, hydroxyl radical scavenging activity and superoxide anion radical scavenging activity decreased, except for the Fe2+ chelation and ABTS+ scavenging capacity which increased significantly. However, the cooked groups still showed a strong antioxidant capacity. In particular, the superoxide anion radical scavenging ability and the Fe2+ chelation action were significantly stronger compared to glutathione (GSH) and butylated hydroxytoluene (BHT) (p < 0.05). JHBP-1.5 also displayed stronger antioxidant capacity than the other three cooked groups, and its secondary structure and mass distribution changed significantly after cooking, specifically with an increased proportion of helix and <1 kDa peptides. Moreover, the constitution of free amino acids (FAAs) and the types of peptides released in the broth increased significantly with a longer cooking time. In total, 1306 (JHBP-0), 1352 (JHBP-1), 1431 (JHBP-1.5), 1500 (JHBP-2), and 1556 (JHBP-2.5) peptide sequences were detected using LC-MC/MC. The proportion of <1 kDa peptides also gradually increased as the cooking time extended, which is consistent with the molecular weight distribution measurements.
Collapse
Affiliation(s)
| | | | | | - Lujuan Xing
- Correspondence: (L.X.); (W.Z.); Tel./Fax: +86-25-84395341 (W.Z.)
| | - Wangang Zhang
- Correspondence: (L.X.); (W.Z.); Tel./Fax: +86-25-84395341 (W.Z.)
| |
Collapse
|
11
|
Hu S, Zhou G, Xu X, Zhang W, Li C. Insight into the impacts of Jinhua ham processing conditions on cathepsin B activity and conformation changes based on molecular simulation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Lee SY, Kang JH, Lee DY, Jeong JW, Kim JH, Moon SS, Hur SJ. Methods for improving meat protein digestibility in older adults. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:32-56. [PMID: 37093926 PMCID: PMC10119465 DOI: 10.5187/jast.2023.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
This review explores the factors that improve meat protein digestibility and applies the findings to the development of home meal replacements with improved protein digestion rates in older adults. Various methods improve the digestion rate of proteins, such as heat, ultrasound, high pressure, or pulse electric field. In addition, probiotics aid in protein digestion by improving the function of digestive organs and secreting enzymes. Plant-derived proteases, such as papain, bromelain, ficin, actinidin, or zingibain, can also improve the protein digestion rate; however, the digestion rate is dependent on the plant enzyme used and protein characteristics. Sous vide processing improves the rate and extent of protein digestibility, but the protein digestion rate decreases with increasing temperature and heating time. Ultrasound, high pressure, or pulsed electric field treatments degrade the protein structure and increase the proteolytic enzyme contact area to improve the protein digestion rate.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Hyeop Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Won Jeong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sung Sil Moon
- Sunjin Technology & Research
Institute, Icheon 17332, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
13
|
Current status and future trends of sous vide processing in meat industry; A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Wang H, Wang Y, Wu D, Gao S, Jiang S, Tang H, Lv G, Xiaobo Z, Meng X. Changes in physicochemical quality and protein properties of porcine
longissimus lumborum
during dry ageing. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hengpeng Wang
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Yinlan Wang
- School of Food Science, Jiangsu College of Tourism Yangzhou 225000 China
| | - Danxuan Wu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Sumin Gao
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Songsong Jiang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| | - Hailian Tang
- Suzhou Tourism and Finance Institute, Jiangsu Union Technical Institue Suzhou 215000 China
| | - Guanhua Lv
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Zou Xiaobo
- Agricultural Product Processing and Storage Lab, International Joint Research Laboratory of Intelligent Agriculture and Agriproducts Processing, School of Food and Biological Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiangren Meng
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University Yangzhou 225127 China
| |
Collapse
|
15
|
Wang L, Li J, Teng S, Zhang W, Purslow PP, Zhang R. Changes in collagen properties and cathepsin activity of beef M. semitendinosus by the application of ultrasound during post-mortem aging. Meat Sci 2021; 185:108718. [PMID: 34837884 DOI: 10.1016/j.meatsci.2021.108718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022]
Abstract
The effects of ultrasound (0, 300 and 600 W for 20 min at the frequency of 20 kHz) followed by postmortem aging (0, 4 and 8 d aging time) on beef quality were evaluated. Ultrasound treatment, aging time and their interaction all significantly affected the pH and tenderness of beef (p < 0.05). Furthermore, ultrasound improved the cathepsin B + L activities and the solubility of collagen compared with the control without ultrasound treatment (p < 0.05). In terms of microstructure, the perimysium was ruptured by the ultrasound treatment which caused the collagen fibers to be disorderly and loosely arranged. In addition, ultrasound could affect the structural stability of collagen resulting in a significant reduction of thermal denaturation temperature (p < 0.05). The results showed that ultrasound could improve beef tenderness during postmortem aging by changing collagen structure and regulating the activities of cathepsin B + L.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jingjun Li
- College of Food Science and Technology, Anhui Science and Technology University, Chuzhou 233100, China
| | - Shuang Teng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Peter P Purslow
- Tandil Centre for Veterinary Investigation (CIVETAN), National University of Central Buenos Aires Province, Tandil B7001BBO, Argentina.
| | - Ruyu Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Wang Y, Tian X, Liu X, Xing J, Guo C, Du Y, Zhang H, Wang W. Focusing on intramuscular connective tissue: Effect of cooking time and temperature on physical, textual, and structural properties of yak meat. Meat Sci 2021; 184:108690. [PMID: 34656007 DOI: 10.1016/j.meatsci.2021.108690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to evaluate the effects of different cooking time (2, 4, and 6 h) and temperature (50, 60, 70, 80, and 90 °C) on physical, textual, and structural properties of longissimus lumborum muscle of yak, and to explore the thermal denaturation process of intramuscular collagen by using a new tool (collagen hybridizing peptide staining, CHP staining). The results showed that tenderness was affected by the interaction of cooking time and temperature and the changes in moisture and collagen composition. In comparison with cooking time, temperature had more obvious effects on cooking loss, moisture content and redness. Scanning electron microscopy showed that as the temperature increased, intramuscular connective tissue gradually degraded, and muscle fibers became more compact. CHP staining showed that the collagen in the perimysium first denatured at 50 °C, and more and more collagen denatured and degraded as the temperature increased.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinzhu Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinfeng Xing
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Guo
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuehong Du
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
17
|
Xiao H, Li N, Yan L, Xue Y. The Hydration Characteristics, Structural Properties and Volatile Profile of Squid ( Symplectoteuthis oualaniensis) Mantle Muscle: Impacts of Steaming, Boiling, and Sous Vide Cooking. Foods 2021; 10:foods10071646. [PMID: 34359516 PMCID: PMC8305883 DOI: 10.3390/foods10071646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, the effects of boiling (BO), steaming (ST), and sous vide (SV) on the hydration characteristics, structural properties, and volatile profile of squid (Symplectoteuthis oualaniensis) mantle muscle (SMM) were investigated. Three cooking methods resulted in a dramatic decrease in proton mobility and freedom of protons, the relaxation time T2 decreased after cooking, and the water binding in the SMM was closer, but the SV treatment could retain more water in the SMM. SV resulted in a lower cooking loss (10.8%) than ST (49.0%) and BO (36.7%). Samples treated with SV had a better color and texture, the secondary structure β-fold of the squid protein was damaged by cooking to a certain extent, and the damage degree was BO > ST > SV. Compared with BO and ST, SV treatment caused more damage to the myosin heavy chain, paramyosin, and actin in SMM, improved the tenderness of SMM, and resulted in more regular internal reticular structures and less formation of fibrous structures. Cooking methods can significantly affect the volatile components of SMM, resulting in increasing volatile components or generating new volatile components in SMM including 2-methylbutanal, ethyl 2-methylpropanoate, acetic acid, and propyl methyl ketone in ST and BO samples and 2-methylbutanal, hexanal, and 2,3-pentanedione in SV samples. Therefore, SV resulted in the best quality squids and has substantial industrial application potential.
Collapse
Affiliation(s)
- Hong Xiao
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
| | - Nannan Li
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China; (N.L.); (L.Y.)
| | - Longtao Yan
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China; (N.L.); (L.Y.)
| | - Yong Xue
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China; (N.L.); (L.Y.)
- Correspondence: address: ; Tel.: +86-0532-8203-2597; Fax: +86-0532-8203-2468
| |
Collapse
|
18
|
Dominguez-Hernandez E, Ertbjerg P. Effect of LTLT heat treatment on cathepsin B and L activities and denaturation of myofibrillar proteins of pork. Meat Sci 2021; 175:108454. [PMID: 33548841 DOI: 10.1016/j.meatsci.2021.108454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/28/2022]
Abstract
The aim was to study biophysical and chemical changes during low-temperature long-time (LTLT) heat treatment of pork by measuring cathepsin B+L activity, surface hydrophobicity of myofibrils, particle size of myofibrils and effect on meat toughness as indicated by Allo-Kramer shear force. Longissimus thoracis et lumborum muscles were divided into large pieces, vacuum packaged and cooked in water baths at 53, 58, 63, 68 and 73 °C for 1, 8 and 24 h. The results showed that the meat toughness was markedly lower at temperatures of 53 °C and 58 °C and decreased with increasing holding time. Myofibrillar surface hydrophobicity increased with temperature, but not with time, indicating aggregation and/or gelation phenomena took place. Treatments with the lowest shear force values generally had smaller particles and were associated with high cathepsin B+L activity. A mechanism by which these cathepsins might affect the aggregation dynamics and change the mechanical properties of meat is proposed.
Collapse
Affiliation(s)
| | - Per Ertbjerg
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|