1
|
Xie L, Guo C, Yang L, He Y. Harnessing gold nanomaterials for advanced multicolor colorimetric biosensors in food hazards detection. J Food Drug Anal 2024; 32:274-295. [PMID: 39636771 PMCID: PMC11464037 DOI: 10.38212/2224-6614.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/27/2024] [Indexed: 12/07/2024] Open
Abstract
Hazards such as pathogenic bacteria, mycotoxins, pesticides, antibiotics, heavy metal ions, etc., cause serious food safety problems worldwide due to their toxicity and frequent contamination. Rapid screening is an effective way for food safety control, which highly relies on the development of sensitive, specific, and convenient detection methods. The multicolor colorimetric biosensors based on gold nanomaterials have evolved into advanced tools for detecting various hazards in food, with intuitive readout. The excellent localized surface plasmon resonance (LSPR) properties of gold nanomaterials enable them to exhibit bright colors when used as chromophores. In addition, the small changes in the morphology of gold nanomaterials can lead to significant changes in the wavelength of the LSPR peak, resulting in vivid color changes. Since the color discrimination ability of the normal human eye is usually superior to the intensity change ability, the way in which different concentrations of targets represent vivid color changes makes it feasible to fabricate sensors with improved accuracy in visual semi-quantitative detection. By combining with various signal amplification strategies, the detection sensitivity of the constructed sensors can be further improved, even reaching the level of pg/mL. In this review, two strategies for changing the morphology of gold nanomaterials in constructing multicolor colorimetric biosensors, namely the etching strategy and the growth strategy were discussed. We also highlight current progress in developing different gold nanomaterial-based multicolor colorimetric biosensors for detecting various hazards in food. The hazards in food samples are classified as pathogens, mycotoxins, indicators of food freshness, pesticides, antibiotics, heavy metal ions, food additives, and hazards from food processing and packaging. The multicolor colorimetric biosensors based on gold nanomaterials represent a promising tool for visual detection of hazardous materials in food.
Collapse
Affiliation(s)
- Longyingzi Xie
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR
China
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR
China
| | - Chenxi Guo
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR
China
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR
China
| | - Lu Yang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR
China
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR
China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR
China
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture and Rural Affairs, Citrus Research Institute, Southwest University, Chongqing, 400712, PR
China
| |
Collapse
|
2
|
Krithivasan R, Miller GZ, Belliveau M, Gearhart J, Krishnamoorthi V, Lee S, Kannan K. Analysis of ortho-phthalates and other plasticizers in select organic and conventional foods in the United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:778-786. [PMID: 37726506 DOI: 10.1038/s41370-023-00596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND ortho-phthalates and other plasticizers impart flexibility to plastics in food production, processing, and packaging; food consumption is a dominant plasticizer exposure pathway. Lower molecular weight ortho-phthalates are being replaced in plastic products due to toxicity concerns, but toxic hazards of and exposures to replacement ortho-phthalates and other plasticizers are poorly understood. OBJECTIVE We measured 12 ortho-phthalates and 9 other plasticizers in conventional and organic U.S. food products to assess magnitude and profiles of contamination. METHODS We measured plasticizers in 34 vegetable oils, 10 milks, 18 infant formulas, and 9 cheese powders from macaroni kits using gas chromatography coupled with mass spectrometry (GC-MS). We analyzed plastic packaging composition using FTIR spectroscopy. RESULTS We detected eight ortho-phthalates and three alternatives ((1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), diethylhexyl terephthalate (DEHT), and diisobutyl adipate (DIBA). Diethylhexyl phthalate (DEHP) was measured in all 71 products. DEHT had the highest concentration of any plasticizer (>10,000 ng/g in three oils). Oils had the highest total plasticizer (median = 770 ng/g, max = 14,900 ng/g) and milk the lowest (median = 88 ng/g, max = 120 ng/g). Organic milk and refined oils had higher median plasticizer levels than conventional. Refined oils had significantly lower concentrations than unrefined oils. Maximum contributors for every category were non-ortho-phthalates: DEHT (powdered infant formula and oils) and DIBA (cheese powder, milk and liquid formula). Plasticizers were not detected in packaging except epoxidized soybean oil in liquid formula lids. IMPACT STATEMENT Human exposure to plasticizers is a significant public health concern. Nevertheless, sources of such exposures are poorly characterized. This study adds valuable information for estimating legacy and alternative plasticizer exposures from foods. The method developed for measuring DINCH, DINP and DIDP broadens the range of plasticizers other researchers may analyze in future work. The profiles of plasticizer contamination varied depending on the food type. We also document that food processing may be a source of plasticizer contamination in foods.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunmi Lee
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, Empire State Plaza, Albany, NY, 12201, USA
| |
Collapse
|
3
|
Wang S, Yang J, Sun J, Liu K, Xie X, Hong L, Wang S, Pan M. Nanomaterial-based magnetic surface molecularly imprinted polymers for specific extraction and efficient recognition of dibutyl phthalate. Food Chem 2023; 426:136621. [PMID: 37354582 DOI: 10.1016/j.foodchem.2023.136621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
A rapid and selective sorbent for the enrichment of dibutyl phthalate (DBP) from water and Chinese Baijiu samples was established using magnetic surface molecularly imprinted polymers (MSMIPs) combined with gas chromatography-mass spectrometer (GC-MS). The MSMIPs were synthesized using a magnetic nanosphere material with silica layer, increasing the polymer surface area as a carrier. Compared with the traditional methods, the addition of magnetic microspheres simplified the process of food substrate purification and significantly shortened the pre-concentration time. The MSMIPs adsorption conforms to the Freundlich isotherm model as multilayer adsorption on an inhomogeneous surface and the pseudo-second-order model. The developed MSMIPs combined with GC-MS method showed good linearity in DBP concentration range of 0.02-1.0 mg L-1 with low LOD (0.0054 mg L-1) and LOQ (0.018 mg L-1), and obtained good recoveries in real samples (95.2-97.2%) with RSD < 5.0% (n = 9), which were consistent with those from Chinese national standard method.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiaqing Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Ma J, Wang Z, Qin C, Wang T, Hu X, Ling W. Safety of benzophenone-type UV filters: A mini review focusing on carcinogenicity, reproductive and developmental toxicity. CHEMOSPHERE 2023; 326:138455. [PMID: 36944403 DOI: 10.1016/j.chemosphere.2023.138455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Consumer products containing benzophenone-type ultraviolet (UV) filters (BPs) have been widely accepted by the public, resulting in the widely existence of various BPs in the human body and environment. In recent years, more and more evidences show that BPs are endocrine disruptors. In view of the continuous exposure risk of BPs and their endocrine disrupting characteristics, the carcinogenicity of BPs and their effects on reproduction and development are of particular concern. However, due to the wide varieties of BPs and the scattered toxicity studies on BPs, people have a limited understanding on the safety of BPs. Therefore, this paper systematically reviews the carcinogenicity, reproductive and developmental toxicity of BPs in order to expand people's knowledge on the health risks of BPs and screen for more safe BPs. Although existing toxicological studies are insufficient, it can be determined that BPs have different potentials for carcinogenicity, and reproductive and developmental toxicity. Among those BPs, 2-hydroxyl-4-methoxyl benzophenone needs to be used with caution due to its adverse effects on cancer cell proliferation and migration, reproductive ability, sex differentiation, neurodevelopment, and so on. It is worth noting that functional group substitutions significantly affect the interaction between BPs and biomolecules such as DNA, cancer cells, and seminal fluid, resulting in different levels of toxicity. In short, it is very necessary to evaluate the carcinogenicity, reproductive and developmental toxicity of BPs, which is of great significance for establishing reasonable BPs content standards in cosmetics, water quality treatment standards for BPs, and so on.
Collapse
Affiliation(s)
- Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zeming Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Ma J, Qin C, Waigi MG, Gao Y, Hu X, Mosa A, Ling W. Functional group substitutions influence the binding of benzophenone-type UV filters with DNA. CHEMOSPHERE 2022; 299:134490. [PMID: 35385766 DOI: 10.1016/j.chemosphere.2022.134490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
As a class of possible carcinogens, benzophenone-type UV filters (BPs) widely exist in natural environments and organisms. The crucial step of the carcinogenic process induced by cancerous toxins is binding with DNA to form adducts. Here, the binding of 10 typical BPs, i.e., benzophenone (BP1), 2-hydroxyl benzophenone (BP2), 4-hydroxyl benzophenone (BP3), 2,2'-dihydroxyl benzophenone (BP4), 2,4-dihydroxyl benzophenone (BP5), 4,4'-dihydroxyl benzophenone (BP6), 2,4,4'-trihydroxyl benzophenone (BP7), 2,2',4,4'-tetrahydroxyl benzophenone (BP8), 2-hydroxyl-4-methoxyl benzophenone (BP9), and 2,2'-dihydroxyl-4-methoxyl benzophenone (BP10), with DNA was tested via fluorescence quenching experiments. Only hydroxyl group-substituted BPs could bind to DNA by groove binding mode, and the quenching constants were 0.93 × 103-5.89 × 103 L/mol. Substituted BPs were preferentially bound to thymine. Circular dichroism analysis confirmed that BPs could affect DNA base stacking but could not transform its B-form. Based on molecular electrostatic surface potential analyses, molecular dynamics simulations, and energy decomposition calculations, it could be found that the site and number of hydroxyl substitution changed the molecular polarity of BPs, thereby affecting the number and strength of hydrogen bonds between BPs and DNA. The hydroxyl substitution at site 2 was more conducive to binding than at site 4. This study is beneficial in comprehending the carcinogenic mechanisms of BPs.
Collapse
Affiliation(s)
- Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
6
|
Edwards L, McCray NL, VanNoy BN, Yau A, Geller RJ, Adamkiewicz G, Zota AR. Phthalate and novel plasticizer concentrations in food items from U.S. fast food chains: a preliminary analysis. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:366-373. [PMID: 34702987 PMCID: PMC9119856 DOI: 10.1038/s41370-021-00392-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Fast food consumption is associated with biomarkers of ortho-phthalates exposures. However, the chemical content of fast food is unknown; certain ortho-phthalates (i.e., di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP)) have been phased out and replaced with other plasticizers (e.g., dioctyl terephthalate (DEHT)). OBJECTIVE We conducted a preliminary study to examine ortho-phthalate and replacement plasticizer concentrations in foods and food handling gloves from U.S. fast food restaurants. METHODS We obtained hamburgers, fries, chicken nuggets, chicken burritos, cheese pizza (n = 64 food samples) and gloves (n = 3) from restaurants and analyzed them for 11 chemicals using gas chromatography mass spectrometry. RESULTS We found DEHT at the highest concentrations in both foods (n = 19; median = 2510 µg/kg; max = 12,400 µg/kg) and gloves (n = 3; range: 28-37% by weight). We detected DnBP and DEHP in 81% and 70% of food samples, respectively. Median DEHT concentrations were significantly higher in burritos than hamburgers (6000 µg/kg vs. 2200 µg/kg; p < 0.0001); DEHT was not detected in fries. Cheese pizza had the lowest levels of most chemicals. SIGNIFICANCE To our knowledge, these are the first measurements of DEHT in food. Our preliminary findings suggest that ortho-phthalates remain ubiquitous and replacement plasticizers may be abundant in fast food meals. IMPACT STATEMENT A selection of popular fast food items sampled in this study contain detectable levels of replacement plasticizers and concerning ortho-phthalates. In addition, food handling gloves contain replacement plasticizers, which may be a source of food contamination. These results, if confirmed, may inform individual and regulatory exposure reduction strategies.
Collapse
Affiliation(s)
- Lariah Edwards
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Nathan L McCray
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Brianna N VanNoy
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Alice Yau
- Department of Analytical and Environmental Chemistry, Southwest Research Institute, San Antonio, TX, USA
| | - Ruth J Geller
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ami R Zota
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA.
| |
Collapse
|
7
|
Characterization of Polyester Coatings Intended for Food Contact by Different Analytical Techniques and Migration Testing by LC-MS n. Polymers (Basel) 2022; 14:polym14030487. [PMID: 35160476 PMCID: PMC8839341 DOI: 10.3390/polym14030487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Polymeric coating formulations may contain different components such as cross-linking agents, resins, lubricants, and solvents, among others. If the reaction process or curing conditions are not applied in a proper way, these components may remain unreacted in the polymeric network and could be released and migrate into foods. In this study, several polyester coatings intended for food contact were investigated. Firstly, Fourier-transform infrared spectroscopy with an attenuated total reflectance (ATR-FTIR) spectrometer and confocal Raman microscopy were used to identify the type of coating. Then, different techniques, including gas chromatography coupled to mass spectrometry (GC-MS) and analysis by matrix-assisted laser desorption coupled to time-of-flight mass spectrometry (MALDI-TOF-MS), among others, were used to investigate the potential volatile and non-volatile migrants. Moreover, migration assays were carried out to evaluate the presence of monomers and to tentatively identify possible oligomers below 1000 Da. The analyses were performed by liquid chromatography coupled to ion trap mass spectrometry (LC-MSn). Using the information collected from each analytical technique, it was possible to elucidate some of the starting substances used in the formulation of the polyester coatings analyzed in this study. In migration tests, several polyester oligomers were tentatively identified for which there is not toxicological data available and, therefore, no migration limits established to date.
Collapse
|
8
|
Wang S, Pan M, Liu K, Xie X, Yang J, Hong L, Wang S. A SiO 2@MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate. Food Chem 2022; 381:132225. [PMID: 35114624 DOI: 10.1016/j.foodchem.2022.132225] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023]
Abstract
A molecularly imprinted sensor for highly sensitive and selective determination of dibutyl phthalate (DBP) was fabricated by combining multi-walled carbon nanotubes (MWCNTs) and Au nanoparticles (AuNPs) with surface molecularly imprinted polymer (SMIPs). The MWCNTs and AuNPs were designed to modify the electrode surface to accelerate the electron transfer rate and enhance the chemical stability. SMIPs were synthesized using SiO2 microspheres as carriers. By loading SMIPs capable of identifying DBP on the surface of modified electrodes of MWCNTs and AuNPs, an electrochemical sensor for detecting DBP was successfully constructed. After optimizing the experimental conditions, the modified electrode SiO2-COOH@MIP/AuNPs/MWCNTs/GCE can recognize DBP in the range of 10-7g L-1 to 10-2g L-1, and the detection limit achieved to 5.09 × 10-9 g L-1 (S/N = 3). The results demonstrate that the proposed MIP electrochemical sensor may be a promising candidate electrochemical strategy for detecting DBP in complex samples.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
9
|
Mercogliano R, Santonicola S, Albrizio S, Ferrante MC. Occurrence of bisphenol A in the milk chain: A monitoring model for risk assessment at a dairy company. J Dairy Sci 2021; 104:5125-5132. [PMID: 33685697 DOI: 10.3168/jds.2020-19365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/17/2021] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) as a chemical hazard may enter the milk chain during primary production at the farm and, successively, during milk processing at a dairy company. To identify the potential pathways that play a role in the occurrence of BPA, a monitoring model for risk assessment based on the identification of the hazards at each stage of milk processing was investigated. Milk samples were analyzed using liquid chromatography with fluorescence detection. Quantifiable levels were detected in samples obtained from the raw milk storage tank, pasteurized milk from the storage tank, and packaged milk. The highest BPA contamination levels were detected in raw milk from the storage tank (mean 0.265 µg/L). Despite the fact that dietary exposure levels were below the temporary daily intake, BPA may have adverse effects, particularly for vulnerable population groups. New monitoring programs involving each stage of milk processing should therefore be applied.
Collapse
Affiliation(s)
- Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Production, University of Naples, Via F. Delpino, 1, 80137 Napoli, Italy.
| | - Serena Santonicola
- Department of Medicine and Health Sciences, University of Molise, Via Francesco De Sanctis, 1, 86100 Campobasso, Italy
| | - Stefania Albrizio
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Napoli, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Production, University of Naples, Via F. Delpino, 1, 80137 Napoli, Italy
| |
Collapse
|