1
|
Radio Galaxies at TeV Energies. GALAXIES 2022. [DOI: 10.3390/galaxies10030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Unlike blazars, radio galaxies have jets that are misaligned relative to our line-of-sight. This misaligned geometry provides us with a unique view of both the jet and super massive black hole. To date, four radio galaxies have been detected at TeV energies with an additional two active galactic nuclei shown to exhibit both radio galaxy and BL Lac-type properties. TeV observations of radio galaxies have revealed these objects to be fascinating, displaying ultra-fast variability and often relatively hard spectral energy distributions. This work aims to provide a review of the current state of radio galaxy observations within the context of very-high-energy γ-ray astronomy, while also highlighting that radio galaxies are excellent targets for multi-wavelength observations. A number of motivations for the continued study of radio galaxies are provided, and these are discussed with a focus on the key observational results, including implications for future observations with next-generation instruments soon to be operational.
Collapse
|
2
|
Abstract
We present the results from high-resolution observations carried out with the eMERLIN UK-array and the European VLBI network (EVN) for a sample of 15 FR 0s, i.e., compact core-dominated radio sources associated with nearby early-type galaxies (ETGs), which represent the bulk of the local radio galaxy population. The 5 GHz eMERLIN observations available for five objects exhibit sub-mJy core components and reveal pc-scale twin jets for four out of five FR 0s once the eMERLIN and JVLA archival visibilities data are combined. The 1.66 GHz EVN observations available for 10 FR 0s display one- and two-sided jetted morphologies and compact cores. The pc-scale core emission contributes, on average, to about one tenth of the total extended radio emission, although we noted an increasing core contribution for flat-/inverted-spectrum sources. We found an unprecedented linear correlation between the pc-scale core luminosity (∼1021.3–1023.6 W Hz−1) and [O III] line luminosity, generally considered as proxy of the accretion power, for a large sample of LINER-type radio-loud low-luminosity active nuclei, all hosted in massive ETGs, which include FR 0s and FR Is. This result represents further evidence of a common jet–disc coupling in FR 0s and FR Is, despite then differing in kpc-scale radio structure. For our objects and for other FR 0 samples reported in the literature, we estimated the jet brightness sidedness ratios, which typically range between one and three. This parameter roughly gauges the jet bulk Lorentz factor Γ, which turns out to range from 1 to 2.5 for most of the sample. This corroborates the scenario that FR 0s are characterized by mildly relativistic jets, possibly as a result of lower-spinning black holes (BHs) than the highly spinning BHs of relativistic-jetted radio galaxies, FR Is.
Collapse
|