1
|
Koren Y, Perilli A, Tchaicheeyan O, Lesman A, Meroz Y. Analysis of root-environment interactions reveals mechanical advantages of growth-driven penetration of roots. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39139105 DOI: 10.1111/pce.15089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/13/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Plant roots are considered highly efficient soil explorers. As opposed to the push-driven penetration strategy commonly used by many digging organisms, roots penetrate by growing, adding new cells at the tip, and elongating over a well-defined growth zone. However, a comprehensive understanding of the mechanical aspects associated with root penetration is currently lacking. We perform penetration experiments following Arabidopsis thaliana roots growing into an agar gel environment, and a needle of similar dimensions pushed into the same agar. We measure and compare the environmental deformations in both cases by following the displacement of fluorescent beads embedded within the gel, combining confocal microscopy and Digital Volume Correlation (DVC) analysis. We find that deformations are generally smaller for growing roots. To better understand the mechanical differences between the two penetration strategies, we develop a computational model informed by experiments. Simulations show that, compared to push-driven penetration, grow-driven penetration reduces frictional forces and mechanical work, with lower propagation of displacements in the surrounding medium. These findings shed light on the complex interaction of plant roots with their environment, providing a quantitative understanding based on a comparative approach.
Collapse
Affiliation(s)
- Yoni Koren
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Alessia Perilli
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Oren Tchaicheeyan
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Yasmine Meroz
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Shi Y, Liu J, Deng J, Cao L, Li L, Shao J, Li J, Xiong D. Tough Bonding of PVA Hydrogel-on-Textured Titanium Alloy with Varying Texture Densities in Swollen State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13773-13783. [PMID: 38920266 DOI: 10.1021/acs.langmuir.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cartilage defects in large joints are a common occurrence in numerous degenerative diseases, especially in osteoarthritis. The hydrogel-on-metal composite has emerged as a potential candidate material, as hydrogels, to some extent, replicate the composition of human articular cartilage consisting of collagen fibers and proteoglycans. However, achieving tough bonding between the hydrogel and titanium alloy remains a significant challenge due to the swelling of the hydrogel in a liquid medium. This swelling results in reduced interfacial toughness between the hydrogel and titanium alloy, limiting its potential clinical applications. Herein, our approach aimed to achieve durable bonding between a hydrogel and a titanium alloy composite in a swollen state by modifying the surface texture of the titanium alloy. Various textures, including circular and triangular patterns, with dimple densities ranging from 10 to 40%, were created on the surface of the titanium alloy. Subsequently, poly(vinyl alcohol) (PVA) hydrogel was deposited onto the textured titanium alloy using a casting-drying method. Our findings revealed that PVA hydrogel on the textured titanium alloy with a 30% texture density exhibited the highest interfacial toughness in the swollen state, measuring at 1300 J m-2 after reaching equilibrium swelling in deionized water, which is a more than 2-fold increase compared to the hydrogel on a smooth substrate. Furthermore, we conducted an analysis of the morphologies of the detached hydrogel from the textured titanium alloy after various swelling durations. The results indicated that interfacial toughness could be enhanced through mechanical interlocking, facilitated by the expanded volume of the hydrogel protrusions as the swelling time increased. Collectively, our study demonstrates the feasibility of achieving tough bonding between a hydrogel and a metal substrate in a liquid environment. This research opens up promising avenues for designing soft/hard heterogeneous materials with strong adhesive properties.
Collapse
Affiliation(s)
- Yan Shi
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jia Liu
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jinhai Deng
- School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Long Li
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jiaojing Shao
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianliang Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dangsheng Xiong
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Huang J, Tang Y, Wang P, Zhou H, Li H, Cheng Z, Wu Y, Xie Z, Cai Z, Wu D, Shen H. One-Pot Construction of Articular Cartilage-Like Hydrogel Coating for Durable Aqueous Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309141. [PMID: 38339915 DOI: 10.1002/adma.202309141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Articular cartilage has an appropriate multilayer structure and superior tribological properties and provides a structural paradigm for design of lubricating materials. However, mimicking articular cartilage traits on prosthetic materials with durable lubrication remains a huge challenge. Herein, an ingenious three-in-one strategy is developed for constructing an articular cartilage-like bilayer hydrogel coating on the surface of ultra-high molecular weight polyethylene (BH-UPE), which makes full use of conceptions of interfacial interlinking, high-entanglement crosslinking, and interface-modulated polymerization. The hydrogel coating is tightly interlinked with UPE substrate through hydrogel-UPE interchain entanglement and bonding. The hydrogel chains are highly entangled with each other to form a dense tough layer with negligible hysteresis for load-bearing by reducing the amounts of crosslinker and hydrophilic initiator to p.p.m. levels. Meanwhile, the polymerization of monomers in the top surface region is suppressed via interface-modulated polymerization, thus introducing a porous surface for effective aqueous lubrication. As a result, BH-UPE exhibits an ultralow friction coefficient of 0.0048 during 10 000 cycles under a load of 0.9 MPa, demonstrating great potential as an advanced bearing material for disc prosthesis. This work may provide a new way to build stable bilayer coatings and have important implications for development of biological lubricating materials.
Collapse
Affiliation(s)
- Jiajun Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Youchen Tang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Peng Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Hao Zhou
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - He Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Ziying Cheng
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Yanfeng Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Zhongyu Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Zhaopeng Cai
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Dingcai Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Huiyong Shen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| |
Collapse
|
4
|
Improving the Self-Healing of Cementitious Materials with a Hydrogel System. Gels 2022; 8:gels8050278. [PMID: 35621576 PMCID: PMC9141947 DOI: 10.3390/gels8050278] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
Despite cement’s superior performance and inexpensive cost compared to other industrial materials, crack development remains a persistent problem in concrete. Given the comparatively low tensile strength, when cracks emerge, a pathway is created for gas and water to enter the cementitious matrix, resulting in steel reinforcement corrosion which compromises the durability of concrete. Superabsorbent hydrogels have been developed as a novel material for enhancing the characteristics of cementitious materials in which they have been demonstrated to decrease autogenous shrinkage and encourage self-healing. This study will detail the design and application of polyelectrolyte hydrogel particles as internal curing agents in concrete and provide new findings on relevant hydrogel–ion interactions. When hydrogel particles are mixed into concrete, they generate their stored water to fuel the curing reaction that results in less cracking and shrinkage, thereby prolonging the service life of the concrete. The interaction of hydrogels with cementitious materials is addressed in this study; the effect of hydrogels on the characteristics and self-healing of cementitious materials was also studied. Incorporating hydrogel particles into cement decreased mixture shrinkage while increasing the production of particular inorganic phases within the vacuum region formerly supplied by the swollen particle. In addition, considering the control paste, cement pastes containing hydrogels exhibited less autogenous shrinkage. The influence of hydrogels on autogenous shrinkage was found to be chemically dependent; the hydrogel with a delayed desorption rate displayed significantly low shrinkage in cement paste.
Collapse
|
5
|
Shinomiya K, Okawara H, Kikuchi K, Mayama H, Nonomura Y. Friction Dynamics of Hydrogel Substrates with a Fractal Surface: Effects of Thickness. ACS OMEGA 2020; 5:16406-16412. [PMID: 32685803 PMCID: PMC7364433 DOI: 10.1021/acsomega.9b04184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Interfacial phenomena on soft and wet materials, such as hydrogels, are important for modeling physical phenomena, such as friction, wetting, and adhesion on hydrophilic biosurfaces. Interfacial phenomena on soft material surfaces are not only affected by the properties of the surface but also by the geometry of the substrate. However, there are few reports on the influence of geometry and deformability on friction behavior at gel interfaces. In this study, we evaluate the effects of the thickness (H) of the upper agar gel layer on the friction force between gels under a sinusoidal movement. Although H does not significantly affect the friction force or pattern, the normalized delay time (δ), which is the normalized time lag in the friction force response to the contact probe's movement, increases with H. A regression analysis between δ and H shows that δ increased linearly with H. We present a simple model incorporating a shear modulus to qualitatively explain the experimental results. The analysis and our model indicate that one must not only consider surface properties, such as adhesion, but also thickness and rigidity when studying friction behavior at the gel-surface interface. These findings will be useful for understanding friction phenomena on soft biological systems, such as the tongue, throat, esophagus, and gut surfaces.
Collapse
Affiliation(s)
- Koki Shinomiya
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Hina Okawara
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Kei Kikuchi
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Yoshimune Nonomura
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| |
Collapse
|
6
|
Sakai A, Murayama Y, Yanagisawa M. Cyclic Micropipette Aspiration Reveals Viscoelastic Change of a Gelatin Microgel Prepared Inside a Lipid Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5186-5191. [PMID: 32347734 DOI: 10.1021/acs.langmuir.0c00428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gelatin microgels prepared inside lipid droplets have a much higher elasticity than that of bulk gels because of their differences in nanostructure. This nanostructural difference in gelatin microgels is expected to provide the microgels with unique viscoelastic properties that differ from the bulk gels. To clarify this hypothesis, here we evaluated the frequency-dependent viscoelasticity of gelatin gels by developing a cyclic micropipette aspiration. The frequency-dependent relationship between storage modulus E' (reflecting elasticity) and loss modulus E″ (reflecting viscosity) was compared between the microgels and the bulk gels. The microgels have a smaller E″/E' than that of the bulk gels. Because the ratio E″/E' of the bulk gels is constant regardless of the concentration, the microgel viscoelasticity cannot be achieved for the bulk gels with a different concentration. These findings mean that preparing biopolymer gels inside droplets is useful to change the viscoelasticity via nanostructural transition through the interaction with the droplet interface.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Yoshihiro Murayama
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Yamaguchi T, Onoue Y, Sawae Y. Topology and Toughening of Sparse Elastic Networks. PHYSICAL REVIEW LETTERS 2020; 124:068002. [PMID: 32109093 DOI: 10.1103/physrevlett.124.068002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/05/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The toughening of sparse elastic networks, such as hydrogels, foams, or meshes against fracture is one of the most important problems in materials science. However, the principles of toughening have not yet been established despite urgent engineering requirements and several efforts made by materials scientists. Here we address the above-mentioned problem by focusing on the topology of a network. We perform fracture experiments for two-dimensional periodic lattices fabricated from rubber strings and connecters with well-defined topological structures. We find that systematic increase in the largest coordination number while maintaining the average coordination number (=4) as constant leads to significant improvement in toughness. We reproduce the observed toughening behavior through numerical simulations and confirm that the stress concentration in the vicinity of a crack tip can be controlled by the topology of the network. This provides a new strategy for creating tough sparse elastic networks, especially hydrogels.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yudai Onoue
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Sawae
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Christensen RK, von Halling Laier C, Kiziltay A, Wilson S, Larsen NB. 3D Printed Hydrogel Multiassay Platforms for Robust Generation of Engineered Contractile Tissues. Biomacromolecules 2019; 21:356-365. [PMID: 31860278 DOI: 10.1021/acs.biomac.9b01274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present a method for reproducible manufacture of multiassay platforms with tunable mechanical properties for muscle tissue strip analysis. The platforms result from stereolithographic 3D printing of low protein-binding poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Contractile microtissues have previously been engineered by immobilizing suspended cells in a confined hydrogel matrix with embedded anchoring cantilevers to facilitate muscle tissue strip formation. The 3D shape and mechanical properties of the confinement and the embedded cantilevers are critical for the tissue robustness. High-resolution 3D printing of PEGDA hydrogels offers full design freedom to engineer cantilever stiffness, while minimizing unwanted cell attachment. We demonstrate the applicability by generating suspended muscle tissue strips from C2C12 mouse myoblasts in a compliant fibrin-based hydrogel matrix. The full design freedom allows for new platform geometries that reduce local stress in the matrix and tissue, thus, reducing the risk of tissue fracture.
Collapse
Affiliation(s)
- Rie Kjær Christensen
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark.,Sophion Bioscience A/S , Baltorpvej 154 , 2750 Ballerup , Denmark
| | - Christoffer von Halling Laier
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark
| | - Aysel Kiziltay
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark
| | - Sandra Wilson
- Sophion Bioscience A/S , Baltorpvej 154 , 2750 Ballerup , Denmark
| | - Niels Bent Larsen
- Department of Health Technology , DTU Health Tech, Technical University of Denmark , Ørsteds Plads 345C , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
9
|
Delavoipière J, Tran Y, Verneuil E, Heurtefeu B, Hui CY, Chateauminois A. Friction of Poroelastic Contacts with Thin Hydrogel Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9617-9626. [PMID: 30028620 DOI: 10.1021/acs.langmuir.8b01466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report on the frictional behavior of thin poly(dimethylacrylamide) hydrogel films grafted on glass substrates in sliding contact with a glass spherical probe. Friction experiments are carried out at various velocities and normal loads applied with the contact fully immersed in water. In addition to friction force measurements, a novel optical setup is designed to image the shape of the contact under steady-state sliding. The velocity dependence of both friction force Ft and contact shape is found to be controlled by a Péclet number, Pe, defined as the ratio of the time τ needed to drain the water out of the contact region to a contact time a/ v, where v is the sliding velocity and a is the contact radius. When Pe < 1, the equilibrium circular contact achieved under static normal indentation remains unchanged during sliding. Conversely, for Pe > 1, a decrease in the contact area is observed together with the development of a contact asymmetry when the sliding velocity is increased. A maximum in Ft is also observed at Pe ≈1. These experimental observations are discussed in the light of a poroelastic contact model based on a thin-film approximation. This model indicates that the observed changes in contact geometry are due to the development of a pore pressure imbalance when Pe > 1. An order-of-magnitude estimate of the friction force and its dependence on normal load and velocity are also provided under the assumption that most of the frictional energy is dissipated by poroelastic flow at the leading and trailing edges of the sliding contact.
Collapse
Affiliation(s)
- Jessica Delavoipière
- Soft Matter Sciences and Engineering Laboratory (SIMM) , PSL Research University, UPMC Univ. Paris 06, Sorbonne Universités, ESPCI Paris, CNRS , 10 rue Vauquelin , 75231 Paris Cedex 05, France
- Saint-Gobain Recherche , 39 quai Lucien Lefranc 93303 Aubervilliers Cedex, France
| | - Yvette Tran
- Soft Matter Sciences and Engineering Laboratory (SIMM) , PSL Research University, UPMC Univ. Paris 06, Sorbonne Universités, ESPCI Paris, CNRS , 10 rue Vauquelin , 75231 Paris Cedex 05, France
| | - Emilie Verneuil
- Soft Matter Sciences and Engineering Laboratory (SIMM) , PSL Research University, UPMC Univ. Paris 06, Sorbonne Universités, ESPCI Paris, CNRS , 10 rue Vauquelin , 75231 Paris Cedex 05, France
| | - Bertrand Heurtefeu
- Saint-Gobain Recherche , 39 quai Lucien Lefranc 93303 Aubervilliers Cedex, France
| | - Chung Yuen Hui
- Department of Mechanical and Aerospace Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Antoine Chateauminois
- Soft Matter Sciences and Engineering Laboratory (SIMM) , PSL Research University, UPMC Univ. Paris 06, Sorbonne Universités, ESPCI Paris, CNRS , 10 rue Vauquelin , 75231 Paris Cedex 05, France
| |
Collapse
|