1
|
Gao D, Yan C, Wang Y, Yang H, Liu M, Wang Y, Li C, Li C, Cheng G, Zhang L. Drug-eluting contact lenses: Progress, challenges, and prospects. Biointerphases 2024; 19:040801. [PMID: 38984804 DOI: 10.1116/6.0003612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Topical ophthalmic solutions (eye drops) are becoming increasingly popular in treating and preventing ocular diseases for their safety, noninvasiveness, and ease of handling. However, the static and dynamic barriers of eyes cause the extremely low bioavailability (<5%) of eye drops, making ocular therapy challenging. Thus, drug-eluting corneal contact lenses (DECLs) have been intensively investigated as a drug delivery device for their attractive properties, such as sustained drug release and improved bioavailability. In order to promote the clinical application of DECLs, multiple aspects, i.e., drug release and penetration, safety, and biocompatibility, of these drug delivery systems were thoroughly examined. In this review, we systematically discussed advances in DECLs, including types of preparation materials, drug-loading strategies, drug release mechanisms, strategies for penetrating ocular barriers, in vitro and in vivo drug delivery and penetration detection, safety, and biocompatibility validation methods, as well as challenges and future perspectives.
Collapse
Affiliation(s)
- Dongdong Gao
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Chunxiao Yan
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yong Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Mengxin Liu
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yi Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| |
Collapse
|
2
|
Bitar L, Isella B, Bertella F, Bettker Vasconcelos C, Harings J, Kopp A, van der Meer Y, Vaughan TJ, Bortesi L. Sustainable Bombyx mori's silk fibroin for biomedical applications as a molecular biotechnology challenge: A review. Int J Biol Macromol 2024; 264:130374. [PMID: 38408575 DOI: 10.1016/j.ijbiomac.2024.130374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Silk is a natural engineering material with a unique set of properties. The major constituent of silk is fibroin, a protein widely used in the biomedical field because of its mechanical strength, toughness and elasticity, as well as its biocompatibility and biodegradability. The domestication of silkworms allows large amounts of fibroin to be extracted inexpensively from silk cocoons. However, the industrial extraction process has drawbacks in terms of sustainability and the quality of the final medical product. The heterologous production of fibroin using recombinant DNA technology is a promising approach to address these issues, but the production of such recombinant proteins is challenging and further optimization is required due to the large size and repetitive structure of fibroin's DNA and amino acid sequence. In this review, we describe the structure-function relationship of fibroin, the current extraction process, and some insights into the sustainability of silk production for biomedical applications. We focus on recent advances in molecular biotechnology underpinning the production of recombinant fibroin, working toward a standardized, successful and sustainable process.
Collapse
Affiliation(s)
- Lara Bitar
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Benedetta Isella
- Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany; Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Francesca Bertella
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; B4Plastics, IQ Parklaan 2A, 3650 Dilsen-Stokkem, Belgium
| | - Carolina Bettker Vasconcelos
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands; Umlaut GmbH, Am Kraftversorgungsturm 3, 52070 Aachen, Germany
| | - Jules Harings
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Alexander Kopp
- Fibrothelium GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Yvonne van der Meer
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Luisa Bortesi
- Maastricht University-Aachen Maastricht Institute for Biobased Materials (AMIBM), Urmonderbaan 22, 6167 RD Geleen, the Netherlands.
| |
Collapse
|
3
|
Injectable Hydrogel Based on Protein-Polyester Microporous Network as an Implantable Niche for Active Cell Recruitment. Pharmaceutics 2022; 14:pharmaceutics14040709. [PMID: 35456546 PMCID: PMC9024632 DOI: 10.3390/pharmaceutics14040709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Despite the potential of hydrogel-based localized cancer therapies, their efficacy can be limited by cancer recurrence. Therefore, it is of great significance to develop a hydrogel system that can provoke robust and durable immune response in the human body. This study has developed an injectable protein-polymer-based porous hydrogel network composed of lysozyme and poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide (PCLA) (Lys-PCLA) bioconjugate for the active recruitment dendritic cells (DCs). The Lys-PCLA bioconjugates are prepared using thiol-ene reaction between thiolated lysozyme (Lys-SH) and acrylated PCLA (PCLA-Ac). The free-flowing Lys-PCLA bioconjugate sols at low temperature transformed to immovable gel at the physiological condition and exhibited stability upon dilution with buffers. According to the in vitro toxicity test, the Lys-PCLA bioconjugate and PCLA copolymer were non-toxic to RAW 263.7 cells at higher concentrations (1000 µg/mL). In addition, subcutaneous administration of Lys-PCLA bioconjugate sols formed stable hydrogel depot instantly, which suggested the in situ gel forming ability of the bioconjugate. Moreover, the Lys-PCLA bioconjugate hydrogel depot formed at the interface between subcutaneous tissue and dermis layers allowed the active migration and recruitment of DCs. As suggested by these results, the in-situ forming injectable Lys-PCLA bioconjugate hydrogel depot may serve as an implantable immune niche for the recruitment and modification of DCs.
Collapse
|