1
|
Jin R, Zhou Z, Liu J, Shi B, Zhou N, Wang X, Jia X, Guo D, Xu B. Aerogels for Thermal Protection and Their Application in Aerospace. Gels 2023; 9:606. [PMID: 37623061 PMCID: PMC10453839 DOI: 10.3390/gels9080606] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
With the continuous development of the world's aerospace industry, countries have put forward higher requirements for thermal protection materials for aerospace vehicles. As a nano porous material with ultra-low thermal conductivity, aerogel has attracted more and more attention in the thermal insulation application of aerospace vehicles. At present, the summary of aerogel used in aerospace thermal protection applications is not comprehensive. Therefore, this paper summarizes the research status of various types of aerogels for thermal protection (oxide aerogels, organic aerogels, etc.), summarizes the hot issues in the current research of various types of aerogels for thermal protection, and puts forward suggestions for the future development of various aerogels. For oxide aerogels, it is necessary to further increase their use temperature and inhibit the sintering of high-temperature resistant components. For organic aerogels, it is necessary to focus on improving the anti-ablation, thermal insulation, and mechanical properties in long-term aerobic high-temperature environments, and on this basis, find cheap raw materials to reduce costs. For carbon aerogels, it is necessary to further explore the balanced relationship between oxidation resistance, mechanics, and thermal insulation properties of materials. The purpose of this paper is to provide a reference for the further development of more efficient and reliable aerogel materials for aerospace applications in the future.
Collapse
Affiliation(s)
- Runze Jin
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Zihan Zhou
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Jia Liu
- Beijing Spacecrafts, China Academy of Space Technology, Beijing 100191, China
| | - Baolu Shi
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Ning Zhou
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Xinqiao Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Xinlei Jia
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Donghui Guo
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Baosheng Xu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
De la Cruz LG, Abt T, León N, Wang L, Sánchez-Soto M. Ice-Template Crosslinked PVA Aerogels Modified with Tannic Acid and Sodium Alginate. Gels 2022; 8:gels8070419. [PMID: 35877504 PMCID: PMC9321210 DOI: 10.3390/gels8070419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 12/24/2022] Open
Abstract
With the commitment to reducing environmental impact, bio-based and biodegradable aerogels may be one approach when looking for greener solutions with similar attributes to current foam-like materials. This study aimed to enhance the mechanical, thermal, and flame-retardant behavior of poly(vinyl alcohol) (PVA) aerogels by adding sodium alginate (SA) and tannic acid (TA). Aerogels were obtained by freeze-drying and post-ion crosslinking through calcium chloride (CaCl2) and boric acid (H3BO3) solutions. The incorporation of TA and SA enhanced the PVA aerogel’s mechanical properties, as shown by their high compressive specific moduli, reaching up to a six-fold increase after crosslinking and drying. The PVA/TA/SA aerogels presented a thermal conductivity of 0.043 to 0.046 W/m·K, while crosslinked ones showed higher values (0.049 to 0.060 W/m·K). Under TGA pyrolytic conditions, char layer formation reduced the thermal degradation rate of samples. After crosslinking, a seven-fold decrease in the thermal degradation rate was observed, confirming the high thermal stability of the formed foams. Regarding flammability, aerogels were tested through cone calorimetry. PVA/TA/SA aerogels showed a significant drop in the main parameters, such as the heat release rate (HRR) and the fire growth (FIGRA). The ion crosslinking resulted in a further reduction, confirming the improvement in the fire resistance of the modified compositions.
Collapse
Affiliation(s)
- Lucía G. De la Cruz
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
| | - Tobias Abt
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
| | - Noel León
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
| | - Liang Wang
- Key Laboratory of Advanced Textiles Composites of Ministry of Education, Tiangong University, Binshui West Road 399, Xiqing District, Tianjin 300387, China;
| | - Miguel Sánchez-Soto
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
- Correspondence: ; Tel.:+34-937398140
| |
Collapse
|
3
|
Gu J, Ji C, Fu R, Yang X, Wan Z, Wen L, Song Q, Liu Y, Wang Y, Sai H. Robust SiO2–Al2O3/Agarose Composite Aerogel Beads with Outstanding Thermal Insulation Based on Coal Gangue. Gels 2022; 8:gels8030165. [PMID: 35323278 PMCID: PMC8952686 DOI: 10.3390/gels8030165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/25/2023] Open
Abstract
Advanced SiO2–Al2O3 aerogel materials have outstanding potential in the field of thermal insulation. Nevertheless, the creation of a mechanically robust and low-cost SiO2–Al2O3 aerogel material remains a considerable challenge. In this study, SiO2–Al2O3 aerogel based on coal gangue, which is a type of zero-cost inorganic waste, was constructed in porous agarose aerogel beads, followed by simple chemical vapor deposition of trimethylchlorosilane to fabricate SiO2–Al2O3/agarose composite aerogel beads (SCABs). The resulting SCABs exhibited a unique nanoscale interpenetrating network structure, which is lightweight and has high specific surface area (538.3 m2/g), hydrophobicity (approximately 128°), and excellent thermal stability and thermal insulation performance. Moreover, the compressive strength of the SCABs was dramatically increased by approximately a factor of ten compared to that of native SiO2–Al2O3 aerogel beads. The prepared SCABs not only pave the way for the design of a novel aerogel material for use in thermal insulation without requiring expensive raw materials, but also provide an effective way to comprehensively use coal gangue.
Collapse
Affiliation(s)
- Jie Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; (J.G.); (C.J.); (X.Y.); (Z.W.); (L.W.); (Q.S.); (Y.L.); (Y.W.)
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Inner Mongolia University of Science & Technology, Baotou 014010, China
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Chao Ji
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; (J.G.); (C.J.); (X.Y.); (Z.W.); (L.W.); (Q.S.); (Y.L.); (Y.W.)
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Rui Fu
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; (J.G.); (C.J.); (X.Y.); (Z.W.); (L.W.); (Q.S.); (Y.L.); (Y.W.)
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Inner Mongolia University of Science & Technology, Baotou 014010, China
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science & Technology, Baotou 014010, China
- Correspondence: (R.F.); (H.S.)
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; (J.G.); (C.J.); (X.Y.); (Z.W.); (L.W.); (Q.S.); (Y.L.); (Y.W.)
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Inner Mongolia University of Science & Technology, Baotou 014010, China
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Zhichen Wan
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; (J.G.); (C.J.); (X.Y.); (Z.W.); (L.W.); (Q.S.); (Y.L.); (Y.W.)
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Lishuo Wen
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; (J.G.); (C.J.); (X.Y.); (Z.W.); (L.W.); (Q.S.); (Y.L.); (Y.W.)
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Qiqi Song
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; (J.G.); (C.J.); (X.Y.); (Z.W.); (L.W.); (Q.S.); (Y.L.); (Y.W.)
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Inner Mongolia University of Science & Technology, Baotou 014010, China
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Yinghui Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; (J.G.); (C.J.); (X.Y.); (Z.W.); (L.W.); (Q.S.); (Y.L.); (Y.W.)
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Yaxiong Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; (J.G.); (C.J.); (X.Y.); (Z.W.); (L.W.); (Q.S.); (Y.L.); (Y.W.)
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Inner Mongolia University of Science & Technology, Baotou 014010, China
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science & Technology, Baotou 014010, China
| | - Huazheng Sai
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China; (J.G.); (C.J.); (X.Y.); (Z.W.); (L.W.); (Q.S.); (Y.L.); (Y.W.)
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Inner Mongolia University of Science & Technology, Baotou 014010, China
- Aerogel Functional Nanomaterials Laboratory, Inner Mongolia University of Science & Technology, Baotou 014010, China
- Correspondence: (R.F.); (H.S.)
| |
Collapse
|