1
|
Skoulas D, Fallon M, Genoud KJ, O’Brien FJ, Hughes DF, Heise A. Shear-Thinning Extrudable Hydrogels Based on Star Polypeptides with Antimicrobial Properties. Gels 2024; 10:652. [PMID: 39451305 PMCID: PMC11507159 DOI: 10.3390/gels10100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels with low toxicity, antimicrobial potency and shear-thinning behavior are promising materials to combat the modern challenges of increased infections. Here, we report on 8-arm star block copolypeptides based on poly(L-lysine), poly(L-tyrosine) and poly(S-benzyl-L-cysteine) blocks. Three star block copolypeptides were synthesized with poly(S-benzyl-L-cysteine) always forming the outer block. The inner block comprised either two individual blocks of poly(L-lysine) and poly(L-tyrosine) or a statistical block copolypeptide from both amino acids. The star block copolypeptides were synthesized by the Ring Opening Polymerization (ROP) of the protected amino acid N-carboxyanhydrides (NCAs), keeping the overall ratio of monomers constant. All star block copolypeptides formed hydrogels and Scanning Electron Microscopy (SEM) confirmed a porous morphology. The investigation of their viscoelastic characteristics, water uptake and syringe extrudability revealed superior properties of the star polypeptide with a statistical inner block of L-lysine and L-tyrosine. Further testing of this sample confirmed no cytotoxicity and demonstrated antimicrobial activity of 1.5-log and 2.6-log reduction in colony-forming units, CFU/mL, against colony-forming reference laboratory strains of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, respectively. The results underline the importance of controlling structural arrangements in polypeptides to optimize their physical and biological properties.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| | - Muireann Fallon
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education and Research, Beaumont Hospital, Beaumont, D09 V2N0 Dublin, Ireland; (M.F.); (D.F.H.)
| | - Katelyn J. Genoud
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI, D02 YN77 Dublin, Ireland; (K.J.G.); (F.J.O.)
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI, D02 YN77 Dublin, Ireland; (K.J.G.); (F.J.O.)
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), D02 YN77 Dublin, Ireland
| | - Deirdre Fitzgerald Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education and Research, Beaumont Hospital, Beaumont, D09 V2N0 Dublin, Ireland; (M.F.); (D.F.H.)
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), D02 YN77 Dublin, Ireland
| |
Collapse
|
2
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
3
|
Su Y, Xu W, Wei Q, Ma Y, Ding J, Chen X. Chiral polypeptide nanoparticles as nanoadjuvants of nanovaccines for efficient cancer prevention and therapy. Sci Bull (Beijing) 2023; 68:284-294. [PMID: 36732117 DOI: 10.1016/j.scib.2023.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
The chirality of bioactive molecules is closely related to their functions. D-amino acids commonly distributed in the bacterial cell walls trigger a robust anti-infective immune response. Inspired by that, two kinds of chiral polypeptides, poly(L-phenylalanine)-block-poly(L-lysine) (PL-K) and poly(L-phenylalanine)-block-poly(D-lysine) (PD-K), were synthesized and used as nanoadjuvants of nanovaccines for cancer prevention and therapy. The amphiphilic polypeptides self-assembled into nanoparticles with a diameter of about 30 nm during ultrasonic-assisted dissolution in phosphate-buffered saline. The nanovaccines PL-K-OVA and PD-K-OVA were easily prepared by mixing solutions of PL-K or PD-K and the model antigen chicken ovalbumin (OVA), respectively, with loading efficiencies of almost 100%. Compared to PL-K-OVA, PD-K-OVA more robustly induced dendritic cell maturation, antigen cross-presentation, and adaptive immune response. More importantly, it effectively prevented and treated the OVA-expressed B16-OVA melanoma model. PD-K-OVA achieved a tumor inhibition rate of 94.9% and even 97.0% by combining with anti-PD-1 antibody. Therefore, the chiral polypeptide nanoparticles represent simple, efficient, and extensively applicable nanoadjuvants for various nanovaccines.
Collapse
Affiliation(s)
- Yuanzhen Su
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weiguo Xu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qi Wei
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yang Ma
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianxun Ding
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xuesi Chen
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
4
|
Chen YF, Wang ZH, Chen YC, Chang CH, Zhuang HZ, Chung FY, Jan JS. Polypeptide Bilayer Assembly-Mediated Gene Delivery Enhances Chemotherapy in Cancer Cells. Mol Pharm 2023; 20:680-689. [PMID: 36515396 DOI: 10.1021/acs.molpharmaceut.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing gene vectors with high transfection efficiency and low cytotoxicity to humans is crucial to improve gene therapy outcomes. This study set out to investigate the use of cationic polypeptide bilayer assemblies formed by coil-sheet poly(l-lysine)-block-poly(l-benzyl-cysteine) (PLL-b-PBLC) as gene vectors that present improved transfection efficiency, endosomal escape, and biocompatibility compared to PLL. The formation of the polyplexes was triggered by hydrogen bonding, hydrophobic interactions, and electrostatic association between the cationic PLL segments and the negatively charged plasmid encoding p53, resulting in self-assembled polypeptide chains. Transfection efficiency of these polyplexes increased with increments of PLL-to-PBLC block ratios, with PLL15-b-PBLC5 bilayers exhibiting the best in vitro transfection efficiency among all, suggesting that PLL-b-PBLC bilayer assemblies are efficient in the protection and stabilization of genes. The polypeptide bilayer gene vector reversed the cisplatin sensitivity of p53-null cancer cells by increasing apoptotic signaling. Consistent with in vitro results, mouse xenograft studies revealed that PLL15-b-PBLC5/plasmid encoding p53 therapy significantly suppressed tumor growth and enhanced low-dose cisplatin treatment, while extending survival of tumor-bearing mice and avoiding significant body weight loss. This study presents a feasible gene therapy that, combined with low-dose chemotherapeutic drugs, may treat genetically resistant cancers while reducing side effects in clinical patients.
Collapse
Affiliation(s)
- Yu-Fon Chen
- Master Program in Biomedicine, National Taitung University, No. 684, Section 1, Zhonghua Road, Taitung 95092, Taiwan.,Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Zih-Hua Wang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Yi-Cheng Chen
- Translational Medicine Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, No. 539, Zhongxiao Road, East District, Chiayi 600566, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Hui-Zhong Zhuang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Fang-Yu Chung
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan 70101, Taiwan
| |
Collapse
|
5
|
Ciou HY, Chen XH, Chung FY, Tang CC, Jan JS. Effect of β-motif, chain length and topology on polypeptide-templated mesoporous silicas through biomimetic mineralization. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Chen YF, Yeh YT, Su YC, Liao CA, Huang CH, Cheng YJ, Jan JS. Cell adhesion inhibiting peptides exhibit potent anticancer activity and modulate intestinal microbiota. MATERIALS & DESIGN 2022; 224:111303. [DOI: 10.1016/j.matdes.2022.111303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Synthesis and Hydrogelation of Star-Shaped Graft Copolypetides with Asymmetric Topology. Gels 2022; 8:gels8060366. [PMID: 35735710 PMCID: PMC9223145 DOI: 10.3390/gels8060366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
To study the self-assembly and hydrogel formation of the star-shaped graft copolypeptides with asymmetric topology, star-shaped poly(L-lysine) with various arm numbers were synthesized by using asymmetric polyglycerol dendrimers (PGDs) as the initiators and 1,1,3,3-tetramethylguanidine (TMG) as an activator for OH groups, followed by deprotection and grafting with indole or phenyl group on the side chain. The packing of the grafting moiety via non-covalent interactions not only facilitated the polypeptide segments to adopt more ordered conformations but also triggered the spontaneous hydrogelation. The hydrogelation ability was found to be correlated with polypeptide composition and topology. The star-shaped polypeptides with asymmetric topology exhibited poorer hydrogelation ability than those with symmetric topology due to the less efficient packing of the grafted moiety. The star-shaped polypeptides grafted with indole group on the side chain exhibited better hydrogelation ability than those grafted with phenyl group with the same arm number. This report demonstrated that the grafted moiety and polypeptide topology possessed the potential ability to modulate the polypeptide hydrogelation and hydrogel characteristics.
Collapse
|
8
|
Li Y, Chang R, Chen YX. Recent advances in post-polymerization modifications on polypeptides: synthesis and applications. Chem Asian J 2022; 17:e202200318. [PMID: 35576055 DOI: 10.1002/asia.202200318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Polypeptides, a kind of very promising biomaterial, have shown a wide range of applications due to their excellent biocompatibility, easy accessibility, and structural variability. To synthesize polypeptides with desired functions, post-polymerization modification (PPM) plays an important role in introducing novel chemical structure on their side-chains. The key of PPM strategy is to develop highly selective and efficient reactions that can couple the additional functional moieties with pre-installed side-chain functionalities on polypeptides. In this minireview, classic PPM reactions and especially their recent progresses are summarized, including different modification approaches for unsaturated alkyl group, oxygen-containing functional group, nitrogen-containing functional group, sulfur-containing functional group and other special functional group on side chains. In addition, this review also highlights the applications of structure-diversified polypeptides generated via PPM strategy in the field of biomaterial.
Collapse
Affiliation(s)
- Yue Li
- Tsinghua University Department of Chemistry, Chemistry, CHINA
| | - Rong Chang
- Tsinghua University Department of Chemistry, Chemistry, CHINA
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Haidian District, 100084, China, 100084, Beiing, CHINA
| |
Collapse
|
9
|
Effect of tethered sheet-like motif and asymmetric topology on hydrogelation of star-shaped block copolypeptides. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Lu L, Zhou W, Chen Z, Hu Y, Yang Y, Zhang G, Yang Z. A Supramolecular Hydrogel Enabled by the Synergy of Hydrophobic Interaction and Quadruple Hydrogen Bonding. Gels 2022; 8:244. [PMID: 35448145 PMCID: PMC9032949 DOI: 10.3390/gels8040244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing preference for minimally invasive surgery requires novel soft materials that are injectable, with rapid self-healing abilities, and biocompatible. Here, by utilizing the synergetic effect of hydrophobic interaction and quadruple hydrogen bonding, an injectable supramolecular hydrogel with excellent self-healing ability was synthesized. A unique ABA triblock copolymer was designed containing a central poly(ethylene oxide) block and terminal poly(methylmethacrylate) (PMMA) block, with ureido pyrimidinone (UPy) moieties randomly incorporated (termed MA-UPy-PEO-UPy-MA). The PMMA block could offer a hydrophobic microenvironment for UPy moieties in water and thus boost the corresponding quadruple hydrogen bonding interaction of Upy-Upy dimers. Owing to the synergetic effect of hydrophobicity and quadruple hydrogen bonding interaction, the obtained MA-UPy-PEO-UPy-MA hydrogel exhibited excellent self-healing properties, and injectable capability, as well as superior mechanical strength, and therefore, it holds great promise in tissue engineering applications, including in cell support and drug release.
Collapse
Affiliation(s)
- Liangmei Lu
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wen Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Medical College of Shantou University, 69 North Dongxia Road, Shantou 515041, China
| | - Zhuzuan Chen
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yang Hu
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu Yang
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guangzhao Zhang
- Department of Materials Science & Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhuohong Yang
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|