1
|
Khan M, Ahmad S, Alzahrani KA, Khan SB. Development and detailed investigation of metal nanoparticles decorated carbon black/sodium alginate composite beads for catalytic reduction of environmental toxicants and hydrogen production. Int J Biol Macromol 2024:137300. [PMID: 39521228 DOI: 10.1016/j.ijbiomac.2024.137300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The discharge of environmental pollutants requires intellectual and rapid solutions to convert them into safer products. Simultaneously, the high energy demands underscore the imperative importance of generating sufficient green energy to fulfill human needs. This study focused on metal nanoparticles (MNPs) decoration on polymeric beads (BDs), employing orange peel derived carbon black (OrP) and sodium alginate polymer (Alg). The resulting Alg-OrP-BDs serve as a versatile platform for the adsorption of different metal ions and their treatment with a potent reducing agent (NaBH4) yielding modified BDs catalysts: Ag0@Alg-OrP-BDs, Ni0@Alg-OrP-BDs, Co0@Alg-OrP-BDs, Fe0@Alg-OrP-BDs, and Cu0@Alg-OrP-BDs. These synthesized nanocomposite catalysts were characterized and exhibit remarkable catalytic reduction capabilities against various nitrophenols and dyes. Notably, Cu0@Alg-OrP-BDs emerges as an outstanding catalyst, demonstrating high efficiency in the (>98 %) reduction of 4-nitrophenol and methyl orange with the rates of 1.568 min-1 and 2.185 min-1, respectively. Furthermore, its parametric study was investigated to explore the efficiency of the selected catalyst in detail. Similarly, the Cu0@Alg-OrP-BDs also enhance hydrogen gas production in various conditions, achieving a rate of 1620.37 mL g-1 of catalyst min-1. The purity of the hydrogen was determined using a GC-TCD system. Hence, this study pioneers the development and thorough examination of the Cu0@Alg-OrP-BDs catalyst, showcasing its exceptional activity and recyclability.
Collapse
Affiliation(s)
- Mansoor Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shahid Ahmad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Saviano L, Brouziotis AA, Suarez EGP, Siciliano A, Spampinato M, Guida M, Trifuoggi M, Del Bianco D, Carotenuto M, Spica VR, Lofrano G, Libralato G. Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules 2023; 28:6185. [PMID: 37687014 PMCID: PMC10488708 DOI: 10.3390/molecules28176185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, sewage treatment plants did not effectively remove emerging water pollutants, leaving potential threats to human health and the environment. Advanced oxidation processes (AOPs) have emerged as a promising technology for the treatment of contaminated wastewater, and the addition of catalysts such as heavy metals has been shown to enhance their effectiveness. This review focuses on the use of rare earth elements (REEs) as catalysts in the AOP process for the degradation of organic pollutants. Cerium and La are the most studied REEs, and their mechanism of action is based on the oxygen vacancies and REE ion concentration in the catalysts. Metal oxide surfaces improve the decomposition of hydrogen peroxide to form hydroxide species, which degrade the organics. The review discusses the targets of AOPs, including pharmaceuticals, dyes, and other molecules such as alkaloids, herbicides, and phenols. The current state-of-the-art advances of REEs-based AOPs, including Fenton-like oxidation and photocatalytic oxidation, are also discussed, with an emphasis on their catalytic performance and mechanism. Additionally, factors affecting water chemistry, such as pH, temperature, dissolved oxygen, inorganic species, and natural organic matter, are analyzed. REEs have great potential for enhancing the removal of dangerous organics from aqueous solutions, and further research is needed to explore the photoFenton-like activity of REEs and their ideal implementation for wastewater treatment.
Collapse
Affiliation(s)
- Lorenzo Saviano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Marisa Spampinato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- CeSMA Advanced Metrological and Technological Service Center, University of Naples Federico II, 80126 Naples, Italy
| | - Donatella Del Bianco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Maurizio Carotenuto
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, 84084 Fisciano, Italy;
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| |
Collapse
|
3
|
Kubra KT, Hasan MM, Hasan MN, Salman MS, Khaleque MA, Sheikh MC, Rehan AI, Rasee AI, Waliullah R, Awual ME, Hossain MS, Alsukaibi AK, Alshammari HM, Awual MR. The heavy lanthanide of Thulium(III) separation and recovery using specific ligand-based facial composite adsorbent. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
4
|
Singh VK, Gunasekaran P, Kumari M, Krishnan D, Ramachandran VK. Animal sourced biopolymer for mitigating xenobiotics and hazardous materials. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Abstract
Over the past several decades, xenobiotic chemicals have badly affected the environment including human health, ecosystem and environment. Animal-sourced biopolymers have been employed for the removal of heavy metals and organic dyes from the contaminated soil and waste waters. Animal-sourced biopolymers are biocompatible, cost-effective, eco-friendly, and sustainable in nature which make them a favorable choice for the mitigation of xenobiotic and hazardous compounds. Chitin/chitosan, collagen, gelatin, keratin, and silk fibroin-based biopolymers are the most commonly used biopolymers. This chapter reviews the current challenge faced in applying these animal-based biopolymers in eliminating/neutralizing various recalcitrant chemicals and dyes from the environment. This chapter ends with the discussion on the recent advancements and future development in the employability of these biopolymers in such environmental applications.
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- School of Biosciences and Bioengineering , Indian Institute of Technology Mandi , VPO Kamand , Mandi , Himachal Pradesh , India
| | - Priya Gunasekaran
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , Ramapuram , Chennai , Tamil Nadu , India
| | - Medha Kumari
- Brainology Research Fellow, Neuroscience and Microplastic Lab , Brainology Scientific Academy of Jharkhand , Ranchi , Jharkhand , India
| | - Dolly Krishnan
- Secretary cum Founder Director, Research Wing , Brainology Scientific Academy of Jharkhand , Ranchi , Jharkhand , India
| | - Vinoth Kumar Ramachandran
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , Ramapuram , Chennai , Tamil Nadu , India
| |
Collapse
|
5
|
Subash A, Naebe M, Wang X, Kandasubramanian B. Biopolymer - A sustainable and efficacious material system for effluent removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130168. [PMID: 36302289 DOI: 10.1016/j.jhazmat.2022.130168] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Undesired discharge of various effluents directly into the aquatic ecosystem can adversely affect water quality, endangering aquatic and terrestrial flora and fauna. Therefore, the conceptual design and fabrication of a sustainable system for alleviating the harmful toxins that are discharged into the atmosphere and water bodies using a green sustainable approach is a fundamental standpoint. Adsorptive removal of toxins (∼99% removal efficacy) is one of the most attractive and facile approaches for cleaner technologies that remediate the environmental impacts and provide a safe operating space. Recently, the introduction of biopolymers for the adsorptive abstraction of toxins from water has received considerable attention due to their eclectic accessibility, biodegradability, biocompatibility, non-toxicity, and enhanced removal efficacy (∼ 80-90% for electrospun fibers). This review summarizes the recent literature on the biosorption of various toxins by biopolymers and the possible interaction between the adsorbent and adsorbate, providing an in-depth perspective of the adsorption mechanism. Most of the observed results are explained in terms of (1) biopolymers classification and application, (2) toxicity of various effluents, (3) biopolymers in wastewater treatment and their removal mechanism, and (4) regeneration, reuse, and biodegradation of the adsorbent biopolymer.
Collapse
Affiliation(s)
- Alsha Subash
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia; Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Xungai Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| |
Collapse
|