1
|
Rajbhar N, Singhal D, Nijhawan HP, Verma P, Soni G, Yadav KS. Bilosomes as a novel ocular drug delivery system: Assessing the material attributes, process parameters, and quality attributes. Exp Eye Res 2025; 255:110364. [PMID: 40157630 DOI: 10.1016/j.exer.2025.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/08/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Bilosomes are lipidic or surfactant-based nanovesicles with bile salts as key constituents and have emerged as promising carriers for diverse administration routes, including topical, oral, transdermal, and ophthalmic applications. In ocular drug delivery, bilosomes have provided some unique advantages over traditional nano-vesicular systems, which include improved permeation, prolonged retention, enhanced stability, and high deformability, resulting in better drug availability for therapeutic action. This review focuses on the quality attributes and process parameters that govern the design and functionality of bilosomes for ocular drug delivery. By addressing critical material attributes and certain formulation techniques, we provide insights into how these factors influence the stability, permeability, and therapeutic efficacy of bilosome-based systems. Advancements in bilosome formulations for treating ocular disorders, such as glaucoma, bacterial conjunctivitis, and keratitis, are highlighted. Additionally, the potential of surface-modified bilosomes with targeting moieties to enhance drug delivery characteristics is discussed. This review aims to provide a comprehensive overview of bilosome-based approaches, including decorated bilosomes, as a novel strategy for addressing challenges in ocular drug delivery.
Collapse
Affiliation(s)
- Nisha Rajbhar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| | - Devansh Singhal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| | - Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India
| | - Piyush Verma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India; Velite Healthcare, Ludhiana, India
| | - Govind Soni
- School of Pharmacy, Dr. A. P. J. Abdul Kalam University, Indore- Dewas Bypass Road, Village- Arandia, P.O. Vijay Nagar, Indore, Madhya Pradesh, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai, India.
| |
Collapse
|
2
|
Mitrović D, Zaklan D, Đanić M, Stanimirov B, Stankov K, Al-Salami H, Pavlović N. The Pharmaceutical and Pharmacological Potential Applications of Bilosomes as Nanocarriers for Drug Delivery. Molecules 2025; 30:1181. [PMID: 40076403 PMCID: PMC11901966 DOI: 10.3390/molecules30051181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Nano-drug delivery systems provide targeted solutions for addressing various drug delivery challenges, leveraging nanotechnology to enhance drug solubility and permeability. Liposomes, explored for several decades, face hurdles, especially in oral delivery. Bile-acid stabilized vesicles (bilosomes) are flexible lipid vesicles, composed of phospholipids or other surfactants, along with amphiphilic bile salts, and they show superior stability and pharmacokinetic behavior in comparison to conventional vesicular systems (liposomes and niosomes). Bilosomes enhance skin penetration, fluidize the stratum corneum, and improve drug stability. In oral applications, bilosomes overcome drawbacks, offering improved bioavailability, controlled release, and reduced side effects. Vaccines using bilosomes demonstrate efficacy, and bilosomes for intranasal, inhalation, ocular, and buccal applications enhance drug delivery, offering targeted, efficient, and controlled activities. Formulations vary based on active substances and optimization techniques, showcasing the versatility and potential of bilosomes across diverse drug delivery routes. Therefore, the aim of this comprehensive review was to critically explore the state-of-the-art of bilosomes in drug delivery and potential therapeutic applications.
Collapse
Affiliation(s)
- Darko Mitrović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| | - Dragana Zaklan
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.S.); (K.S.)
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.S.); (K.S.)
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia;
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| |
Collapse
|
3
|
Helal DA, Osama A, El-Nabarawi MA, Teaima MH, Ibrahim Al-Samadi IE. Dual-action of clotrimazole loaded - nanosponges vaginal gel for spermicidal action and treatment of vaginal candidiasis: Optimization, in-vitro, ex-vivo, and in-vivo experiments. Int J Pharm 2025; 670:125193. [PMID: 39788399 DOI: 10.1016/j.ijpharm.2025.125193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Clotrimazole (CLO) is a strong antifungal drug approved to treat vaginal candidiasis (VC). Nanosponges (NSs) were developed to maintain providing CLO in a steady pattern with amplified accumulation in the vaginal mucosa. The quasi-emulsion solvent diffusion method was utilized to prepare NSs. The optimized NSs selected by Design Expert® exhibited a production yield percent (PY%) of 60.10 ± 0.39 %, encapsulation efficiency percent (EE%) of 91.21 ± 0.59 %, particle size (PS) 275.50 ± 0.97 nm, polydispersity index (PDI) 0.425 ± 0.01, and zeta potential (ZP) of -27.40 ± 0.25 mV. The morphological results confirmed a spongy, porous structure. Fourier Transform Infrared Spectroscopy ensured the drug encapsulation. Differential scanning calorimetric studies showed no interaction between the excipients and CLO. The prepared NSs-loaded gel of optimized CLO-NSs was evaluated, the mucoadhesive strength (6065.85 ± 52.03 dyne/cm2) with spermicidal activity of (0 % sperm motility/60 s). The ex-vivo deposition depicted significantly increased vaginal retention of CLO by 2.44-fold compared to Candistan® 2 % vaginal cream (the market product). Finally, the in-vivo study on rats demonstrated thesuperior efficacy of CLO-NSs gel relative to Candestan®, with significantly reduced inflammatory biomarkers and minimal histopathological alterations in the treatment of vaginal candidiasis with a high safety profile.
Collapse
Affiliation(s)
- Doaa A Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, El Fayoum, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Amr Osama
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, El Fayoum, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud Hassan Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Inas Essam Ibrahim Al-Samadi
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| |
Collapse
|
4
|
Aralelimath K, Sahoo J, Wairkar S. Dermal drug delivery via bilosomes: a synergistic integration for better therapeutic outcomes. J Microencapsul 2024; 41:818-831. [PMID: 39508079 DOI: 10.1080/02652048.2024.2423618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The dermal route is commonly used to deliver the drugs at the targeted site and achieve maximum therapeutic efficacy. The stratum corneum, the uppermost layer of the skin, presents a significant diffusional barrier for most drugs. Various nanoformulations face challenges such as limited drug absorption and inadequate retention at the targeted site, frequently hindering therapeutic efficacy. Researchers are increasingly exploring innovative strategies that leverage nanotechnology and specialized carriers to address these challenges and enhance the outcomes of dermal medications. A novel drug delivery system, bilosomes, has been designed as a potential vesicular carrier system for the dermal route. Bilosomes are colloidal, lipid-based vesicles stabilized with bile salts, offering greater stability during storage and transportation. The lipid bilayer of bilosomes imparts ultra-flexibility, facilitating penetration through the stratum corneum. This review explores the use of bilosomes in dermal formulations for treating diverse diseases, their developmental techniques, and characterization, and it sheds light on their advantages over traditional lipid nanocarriers.
Collapse
Affiliation(s)
- Kartik Aralelimath
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| |
Collapse
|
5
|
Abdallah MH, Shahien MM, El-Horany HES, Ahmed EH, El-Nahas HM, Abdulla NA, Ibrahim TM. Evaluation of Mucoadhesive Nano-Bilosomal In Situ Gels Containing Anti-Psychotic Clozapine for Treatment of Schizophrenia: In Vitro and In Vivo Studies. Pharmaceuticals (Basel) 2024; 17:1404. [PMID: 39459043 PMCID: PMC11510079 DOI: 10.3390/ph17101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Patients with schizophrenia have significant challenges in adhering to and complying with oral medicines, resulting in adverse consequences such as symptom worsening and psychotic relapse. Methods: This study aimed to develop clove oil-based bilosomes using definitive screening design (DSD) to maximize the anti-schizophrenic action of clozapine and promote its nose-to-brain delivery. The target was to optimize the physicochemical properties of bilosomes and incorporate them into mucoadhesive intranasal in situ gels, searching for augmented ex vivo and in vivo clozapine delivery. Results: The bilosomes' particle size was decreased by increasing the span, SDC, and clove oil amounts. In addition to using a high lipid amount, the aforementioned components also helped increase the entrapment efficiency values. Increased zeta potential was only observed by increasing surfactant amount and reducing clozapine concentration. After incorporation of optimized liquid clove oil-based bilosomes, which had a spherical nano-sized vesicular shape, into P 407-dependent gels, an HPMC (2% w/w)/P 407 (20% w/w)-containing formulation (G6) was selected as an optimized gel owing to its acceptable gelation time (13.28 s), gel strength (27.72 s), viscosity (12,766.67 cP), and mucoadhesive strength (4273.93 dyne/cm2). The optimized G6 exhibited higher Jss (50.86 μg/cm2·h-1) through the nasal mucosa compared to the control gel (23.03 μg/cm2·h-1). Compared to the control gel, G6 displayed higher relative bioavailability (491.37%) than a commercial tablet (264.46%). Following ELISA analysis, dopamine and serotonin were significantly reduced, while BDNF was remarkably increased after administration of optimized G6 into schizophrenic rats. Conclusion: Our study indicates the potential of intranasal bilosomal gels in upgrading the anti-schizophrenic and neuroprotective activity of clozapine.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Mona M. Shahien
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hanan M. El-Nahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (N.A.A.); (T.M.I.)
| | - Nourhan A. Abdulla
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (N.A.A.); (T.M.I.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.E.-N.); (N.A.A.); (T.M.I.)
| |
Collapse
|
6
|
Abdallah MH, Shahien MM, Alshammari A, Ibrahim S, Ahmed EH, Atia HA, Elariny HA. The Exploitation of Sodium Deoxycholate-Stabilized Nano-Vesicular Gel for Ameliorating the Antipsychotic Efficiency of Sulpiride. Gels 2024; 10:239. [PMID: 38667658 PMCID: PMC11048809 DOI: 10.3390/gels10040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The present study explored the effectiveness of bile-salt-based nano-vesicular carriers (bilosomes) for delivering anti-psychotic medication, Sulpiride (Su), via the skin. A response surface methodology (RSM), using a 33 Box-Behnken design (BBD) in particular, was employed to develop and optimize drug-loaded bilosomal vesicles. The optimized bilosomes were assessed based on their vesicle size, entrapment efficiency (% EE), and the amount of Sulpiride released. The Sulpiride-loaded bilosomal gel was generated by incorporating the optimized Su-BLs into a hydroxypropyl methylcellulose polymer. The obtained gel was examined for its physical properties, ex vivo permeability, and in vivo pharmacokinetic performance. The optimum Su-BLs exhibited a vesicle size of 211.26 ± 10.84 nm, an encapsulation efficiency of 80.08 ± 1.88% and a drug loading capacity of 26.69 ± 0.63%. Furthermore, the use of bilosomal vesicles effectively prolonged the release of Su over a period of twelve hours. In addition, the bilosomal gel loaded with Su exhibited a three-fold increase in the rate at which Su transferred through the skin, in comparison to oral-free Sulpiride. The relative bioavailability of Su-BL gel was almost four times as high as that of the plain Su suspension and approximately two times as high as that of the Su gel. Overall, bilosomes could potentially serve as an effective technique for delivering drugs through the skin, specifically enhancing the anti-psychotic effects of Sulpiride by increasing its ability to penetrate the skin and its systemic bioavailability, with few adverse effects.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mona M. Shahien
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia; (M.M.S.); (S.I.)
| | - Alia Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Somaia Ibrahim
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia; (M.M.S.); (S.I.)
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (H.A.A.); (H.A.E.)
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Hemat A. Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (H.A.A.); (H.A.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
7
|
Suvarna V, Mallya R, Deshmukh K, Sawant B, Khan TA, Omri A. Novel Vesicular Bilosomal Delivery Systems for Dermal/Transdermal Applications. Curr Drug Deliv 2024; 21:961-977. [PMID: 37424346 DOI: 10.2174/1567201820666230707161206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 07/11/2023]
Abstract
The application of therapeutically active molecules through the dermal/transdermal route into the skin has evolved as an attractive formulation strategy in comparison to oral delivery systems for the treatment of various disease conditions. However, the delivery of drugs across the skin is limited due to poor permeability. Dermal/transdermal delivery is associated with ease of accessibility, enhanced safety, better patient compliance, and reduced variability in plasma drug concentrations. It has the ability to bypass the first-pass metabolism, which ultimately results in steady and sustained drug levels in the systemic circulation. Vesicular drug delivery systems, including bilosomes, have gained significant interest due to their colloidal nature, improved drug solubility, absorption, and bioavailability with prolonged circulation time for a large number of new drug molecules. Bilosomes are novel lipid vesicular nanocarriers comprising bile salts, such as deoxycholic acid, sodium cholate, deoxycholate, taurocholate, glycocholate or sorbitan tristearate. These bilosomes are associated with high flexibility, deformability, and elasticity attributed to their bile acid component. These carriers are advantageous in terms of improved skin permeation, increased dermal and epidermal drug concentration, and enhanced local action with reduced systemic absorption of the drug, resulting in reduced side effects. The present article provides a comprehensive overview of the biopharmaceutical aspects of dermal/transdermal bilosome delivery systems, their composition, formulation techniques, characterization methods, and applications.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Kajal Deshmukh
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Bhakti Sawant
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Tabassum Asif Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
8
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
9
|
Abd-Elal RM, Essawy AM, Salem MA, Elsayed M, Khalil MG, Abdelhakeem E, Ali NA, Tawfik MA. Formulation, optimization, in-vivo biodistribution studies and histopathological safety assessment of duloxetine HCl-loaded ultra-elastic nanovesicles for antidepressant effect after intranasal and transdermal delivery. Int J Pharm X 2023; 6:100194. [PMID: 37434966 PMCID: PMC10331411 DOI: 10.1016/j.ijpx.2023.100194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Duloxetine hydrochloride (DUL) is a BCS class-II antidepressant drug, acting via serotonin and norepinephrine reuptake inhibition. Despite high oral absorption, DUL suffers limited bioavailability due to extensive gastric and first-pass metabolism. To improve DUL's bioavailability; DUL-loaded elastosomes were developed, via full factorial design, utilizing various span®60: cholesterol ratios, edge activator types and amounts. Entrapment efficiency (E.E.%), particle size (PS), zeta potential (ZP) and in-vitro released percentages after 0.5 h (Q0.5h) and 8 h (Q8h) were evaluated. Optimum elastosomes (DUL-E1) were assessed for morphology, deformability index, drug crystallinity and stability. DUL pharmacokinetics were evaluated in rats following intranasal and transdermal application of DUL-E1 elastosomal gel. DUL-E1 elastosomes [comprising span®60 and cholesterol (1:1) and brij S2 (edge activator; 5 mg)] were optimum with high E.E.% (81.5 ± 3.2%), small PS (432 ± 13.2 nm), ZP (-30.8 ± 3.3 mV), acceptable Q0.5h (15.6 ± 0.9%), and high Q8h (79.3 ± 3.8%). Intranasal and transdermal DUL-E1 elastosomes revealed significantly higher Cmax (251 ± 18.6 and 248 ± 15.9 ng/mL) at Tmax (2 and 4 h) and improved relative bioavailability (≈ 2.8 and 3.1 folds) respectively, in comparison to oral DUL aqueous solution. In-vivo histopathological studies were conducted to ensure the safety of DUL-E1. Elastosomes are promising novel nano-carriers, capable of enhancing the bioavailability of DUL via various routes of administration.
Collapse
Affiliation(s)
- Radwa M.A. Abd-Elal
- Pharmaceutics and Drug Manufacturing Department, Faculty of pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Aya M. Essawy
- Department of Clinical Pharmacy, Faculty of pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Maha A. Salem
- Department of Pharmacology and Toxicology, Faculty of pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Mahitab Elsayed
- Department of Clinical Pharmacy, Faculty of pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Mona G. Khalil
- Department of Pharmacology and Toxicology, Faculty of pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Eman Abdelhakeem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nouran A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Nayak D, Rathnanand M, Tippavajhala VK. Unlocking the Potential of Bilosomes and Modified Bilosomes: a Comprehensive Journey into Advanced Drug Delivery Trends. AAPS PharmSciTech 2023; 24:238. [PMID: 37989979 DOI: 10.1208/s12249-023-02696-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
Vesicular drug delivery systems have revolutionized the pharmaceutical field, offering a promising path for achieving targeted and sustained drug delivery. The oral, transdermal, and ocular routes of administration offer optimal ease in attaining desired therapeutic outcomes. However, conventional treatment strategies are all plagued with several challenges, such as poor skin permeability, ocular barriers, and gastrointestinal (GIT) degradation leading to vesicular disruption with the release of the encapsulated drug before reaching the targeted site of action. In recent years, bilosomes-stabilized nanovesicles containing bile salts have received considerable attention due to their versatility and adaptability for diverse applications. These bilayered vesicles enhance the solubility of lipophilic drugs and improve formulation stability in the gastrointestinal tract. They exhibit ultra-deformable properties, improving stratum corneum permeability, making them ideal candidates for oral and transdermal drug delivery. In addition, bilosomes find utility in topical drug delivery, making them applicable for ocular administration. Over the past decade, extensive research has highlighted bilosomes' potential as superior vesicular carriers surpassing liposomes and niosomes. Advances in this field have led to the development of modified bilosomes, such as probilosomes and surface-modified bilosomes, further enhancing their capabilities and therapeutic potential. Thus, the present review provides a comprehensive summary of bilosomes, modified bilosomes, surface modifications with their mechanism of action, formulation components, preparation methods, patents, and a wide array of recent pharmaceutical applications in oral, transdermal, and ocular drug delivery. The enhanced properties of bilosomes offer promising prospects for targeted and effective drug delivery, providing potential solutions for addressing various therapeutic challenges.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
11
|
Padaraju A, Dwivedi F, Kumar G. Microemulsions, nanoemulsions and emulgels as carriers for antifungal antibiotics. Ther Deliv 2023; 14:721-740. [PMID: 38014430 DOI: 10.4155/tde-2023-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
According to estimates, up to 25% of the world's population has fungal skin diseases, making them the most prevalent infectious disease. Several chemical classes of antifungal drugs are available to treat fungal infections. However, the major challenges of conventional formulations of antifungal drugs include poor pharmacokinetic profiles like solubility, low permeability, side effects and decreased efficacy. Novel drug delivery is a promising approach for overcoming pharmacokinetic limitations and increasing the effectiveness of antibiotics. In this review, we have shed light on microemulsions, nanoemulsions, and emulgels as novel drug delivery approaches for the topical delivery of antifungal antibiotics. We believe these formulations have potential translational value and could be developed for treating fungal infections in humans.
Collapse
Affiliation(s)
- Annapurna Padaraju
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Falguni Dwivedi
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education & Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
12
|
Zarenezhad E, Marzi M, Abdulabbas HT, Jasim SA, Kouhpayeh SA, Barbaresi S, Ahmadi S, Ghasemian A. Bilosomes as Nanocarriers for the Drug and Vaccine Delivery against Gastrointestinal Infections: Opportunities and Challenges. J Funct Biomater 2023; 14:453. [PMID: 37754867 PMCID: PMC10531812 DOI: 10.3390/jfb14090453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 09/28/2023] Open
Abstract
The gastrointestinal tract (GIT) environment has an intricate and complex nature, limiting drugs' stability, oral bioavailability, and adsorption. Additionally, due to the drugs' toxicity and side effects, renders are continuously seeking novel delivery systems. Lipid-based drug delivery vesicles have shown various loading capacities and high stability levels within the GIT. Indeed, most vesicular platforms fail to efficiently deliver drugs toward this route. Notably, the stability of vesicular constructs is different based on the different ingredients added. A low GIT stability of liposomes and niosomes and a low loading capacity of exosomes in drug delivery have been described in the literature. Bilosomes are nonionic, amphiphilic, flexible surfactant vehicles that contain bile salts for the improvement of drug and vaccine delivery. The bilosomes' stability and plasticity in the GIT facilitate the efficient carriage of drugs (such as antimicrobial, antiparasitic, and antifungal drugs), vaccines, and bioactive compounds to treat infectious agents. Considering the intricate and harsh nature of the GIT, bilosomal formulations of oral substances have a remarkably enhanced delivery efficiency, overcoming these conditions. This review aimed to evaluate the potential of bilosomes as drug delivery platforms for antimicrobial, antiviral, antifungal, and antiparasitic GIT-associated drugs and vaccines.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| | - Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| | - Hussein T. Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Al Muthanna P.O. Box 07835544777, Iraq;
| | | | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran;
| | - Silvia Barbaresi
- Department of Movement and Sports Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Shiva Ahmadi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| |
Collapse
|
13
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
14
|
Sakr MG, El-Zahaby SA, Al-Mahallawi AM, Ghorab DM. Fabrication of betaxolol hydrochloride-loaded highly permeable ocular bilosomes (HPOBs) to combat glaucoma: In vitro, ex vivo & in vivo characterizations. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104363] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
15
|
Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020656. [PMID: 36839978 PMCID: PMC9967415 DOI: 10.3390/pharmaceutics15020656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Skin delivery is an exciting and challenging field. It is a promising approach for effective drug delivery due to its ease of administration, ease of handling, high flexibility, controlled release, prolonged therapeutic effect, adaptability, and many other advantages. The main associated challenge, however, is low skin permeability. The skin is a healthy barrier that serves as the body's primary defence mechanism against foreign particles. New advances in skin delivery (both topical and transdermal) depend on overcoming the challenges associated with drug molecule permeation and skin irritation. These limitations can be overcome by employing new approaches such as lipid nanosystems. Due to their advantages (such as easy scaling, low cost, and remarkable stability) these systems have attracted interest from the scientific community. However, for a successful formulation, several factors including particle size, surface charge, components, etc. have to be understood and controlled. This review provided a brief overview of the structure of the skin as well as the different pathways of nanoparticle penetration. In addition, the main factors influencing the penetration of nanoparticles have been highlighted. Applications of lipid nanosystems for dermal and transdermal delivery, as well as regulatory aspects, were critically discussed.
Collapse
|
16
|
Anwer MK, Aldawsari MF, Iqbal M, Almutairy BK, Soliman GA, Aboudzadeh MA. Diosmin-Loaded Nanoemulsion-Based Gel Formulation: Development, Optimization, Wound Healing and Anti-Inflammatory Studies. Gels 2023; 9:gels9020095. [PMID: 36826265 PMCID: PMC9956956 DOI: 10.3390/gels9020095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The wound-healing process is complex and prone to interruption or failure, which can result in the development of chronic wounds that never heal. This can be overcome by seeking prompt medical attention, which will reduce the likelihood of complications and speed up the healing of the cutaneous wound. It has been established that functionalized engineered biomaterials are a possible strategy for starting skin wound care. The purpose of the current study is to develop a diosmin (DSM)-loaded nanoemulsion (NE)-based gel formulation and to investigate its wound healing and anti-inflammatory activity on rats. The DSM-loaded NEs (F1-F17) were developed and optimized with the help of Box-Behnken Design Expert. The DSM-Nes were developed using lauroglycol 90 (LG90®) as oil, Tween-80 as surfactant and transcutol-HP (THP) as co-surfactant. The optimized Nes showed globule size (41 ± 0.07 nm), polydispersity index (PDI) (0.073 ± 0.008) and percentage of entrapment efficiency (%EE) (87 ± 0.81%). This optimized DSM-loaded NEs (F1) was further evaluated and incorporated into 1% carbopol 940 gel. F1-loaded gel was then characterized for drug content, spreadability, in vitro release, wound healing, and anti-inflammatory studies. The developed gel of DSM was found to show significantly better (p < 0.05) wound-healing and anti-inflammatory activity.
Collapse
Affiliation(s)
- Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Correspondence:
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Gamal A. Soliman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacology, National Research Centre, Giza 12622, Egypt
| | - M. Ali Aboudzadeh
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France
| |
Collapse
|
17
|
Rahman M, Singh JG, Afzal O, Altamimi AS, Alrobaian M, Haneef J, Barkat MA, Almalki WH, Handa M, Shukla R, Nasar Mir Najib Ullah S, Kumar V, Beg S. Preparation, Characterization, and Evaluation of Curcumin-Graphene Oxide Complex-Loaded Liposomes against Staphylococcus aureus in Topical Disease. ACS OMEGA 2022; 7:43499-43509. [PMID: 36506117 PMCID: PMC9730485 DOI: 10.1021/acsomega.2c03940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
This study describes the development and characterization of curcumin with graphene oxide complex (CUR + GO) loaded into liposomes for treating skin disease. The developed complex was characterized by X-ray diffraction and showed a broad halo pattern, confirming the amorphous nature of the resulting complex. Furthermore, scanning electron microscopy revealed the irregular porous morphology of the complex-highlighting loss of the crystallinity and the emergence of the amorphous phase. Additionally, the liposomes showed long-term stability at 2-8 °C and 25 ± 2 °C/60 ± 5%RH with nonsignificant variations in the particle size, polydispersity index, and zeta potential. Overall, optical and high-resolution transmission electron microscopy images of liposomes showed a consistent shape, and no aggregation with uniform particle size distribution was observed. Furthermore, the cumulative drug release in the first 6 h was 71.24 and 64.24% for CUR-loaded liposomes and CUR-GO-loaded liposomes, respectively. The lower value of drug release might be attributed to the complex development. The drug release model found the first order with non-Fickian diffusion process, which is often observed at higher n > 0.5. The antibacterial activity of the CUR with GO-loaded liposome (D2) offered higher anti-microbial activity over other formulations against the mentioned bacterial microorganism that causes skin diseases.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department
of Pharmaceutical Sciences, Shalom Institute of Health & Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad211007, India
| | - Joina Gunjan Singh
- Department
of Pharmaceutical Sciences, Shalom Institute of Health & Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad211007, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj11942, Saudi Arabia
| | | | - Majed Alrobaian
- Department
of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif21944, Saudi Arabia
| | - Jamshed Haneef
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi110062, India
| | - Md. Abul Barkat
- Department
of Pharmaceutics, College of Pharmacy, University
of Hafr Al Batin, Hafr Al
Batin39524, Saudi Arabia
| | - Waleed H Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah24382, Saudi Arabia
| | - Mayank Handa
- Department
of Pharmaceutics, National Institute of
Pharmaceutical Education and Research-Raebareli, Lucknow, UP226002, India
| | - Rahul Shukla
- Department
of Pharmaceutics, National Institute of
Pharmaceutical Education and Research-Raebareli, Lucknow, UP226002, India
| | | | - Vikas Kumar
- Department
of Pharmaceutical Sciences, Shalom Institute of Health & Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad211007, India
| | - Sarwar Beg
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi110062, India
| |
Collapse
|
18
|
Khafagy ES, Abu Lila AS, Sallam NM, Sanad RAB, Ahmed MM, Ghorab MM, Alotaibi HF, Alalaiwe A, Aldawsari MF, Alshahrani SM, Alshetaili A, Almutairy BK, Al Saqr A, Gad S. Preparation and Characterization of a Novel Mucoadhesive Carvedilol Nanosponge: A Promising Platform for Buccal Anti-Hypertensive Delivery. Gels 2022; 8:gels8040235. [PMID: 35448136 PMCID: PMC9028337 DOI: 10.3390/gels8040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022] Open
Abstract
Carvedilol (CRV) is a non-selective third generation beta-blocker used to treat hypertension, congestive heart failure and angina pectoris. Oral administration of CRV showed poor bioavailability (25%), which might be ascribed to its extensive first-pass metabolism. Buccal delivery is known to boost drugs bioavailability. The aim of this study is to investigate the efficacy of bilosomes-based mucoadhesive carvedilol nanosponge for enhancing the oral bioavailability of CRV. The bilosomes were prepared, optimized and characterized for particle size, surface morphology, encapsulation efficiency and ex-vivo permeation studies. Then, the optimized formula was incorporated into a carboxymethyl cellulose/hydroxypropyl cellulose (CMC/HPC) composite mixture to obtain buccal nanosponge enriched with CRV bilosomes. The optimized bilosome formula (BLS9), showing minimum vesicle size, maximum entrapment, and highest cumulative in vitro release, exhibited a spherical shape with 217.2 nm in diameter, 87.13% entrapment efficiency, and sustained drug release for up to 24 h. In addition, ex-vivo drug permeation across sheep buccal mucosa revealed enhanced drug permeation with bilosomal formulations, compared to aqueous drug suspension. Consecutively, BLS9 was incorporated in a CMC/HPC gel and lyophilized for 24 h to obtain bilosomal nanosponge to enhance CRV buccal delivery. Morphological analysis of the prepared nanosponge revealed improved swelling with a porosity of 67.58%. The in vivo assessment of rats indicated that CRV-loaded nanosponge efficiently enhanced systolic/diastolic blood pressure, decreased elevated oxidative stress, improved lipid profile and exhibited a potent cardio-protective effect. Collectively, bilosomal nanosponge might represent a plausible nanovehicle for buccal delivery of CRV for effective management of hypertension.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.A.); (M.F.A.); (S.M.A.); (A.A.); (B.K.A.); (A.A.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.M.G.); (S.G.)
- Correspondence: ; Tel.: +966-533-564-286
| | - Amr S. Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Nahed Mohamed Sallam
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), Giza 12553, Egypt; (N.M.S.); (R.A.-B.S.)
| | - Rania Abdel-Basset Sanad
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), Giza 12553, Egypt; (N.M.S.); (R.A.-B.S.)
| | - Mahgoub Mohamed Ahmed
- Department of Molecular Drug Evaluation, National Organization for Drug Control and Research (NODCAR), Giza 12553, Egypt;
| | - Mamdouh Mostafa Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.M.G.); (S.G.)
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdul Rahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.A.); (M.F.A.); (S.M.A.); (A.A.); (B.K.A.); (A.A.S.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.A.); (M.F.A.); (S.M.A.); (A.A.); (B.K.A.); (A.A.S.)
| | - Saad M. Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.A.); (M.F.A.); (S.M.A.); (A.A.); (B.K.A.); (A.A.S.)
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.A.); (M.F.A.); (S.M.A.); (A.A.); (B.K.A.); (A.A.S.)
| | - Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.A.); (M.F.A.); (S.M.A.); (A.A.); (B.K.A.); (A.A.S.)
| | - Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.A.); (M.F.A.); (S.M.A.); (A.A.); (B.K.A.); (A.A.S.)
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.M.G.); (S.G.)
| |
Collapse
|