1
|
Haseeb MT, Muhammad G, Hussain MA, Bukhari SNA, Sheikh FA. Flaxseed (Linum usitatissimum) mucilage: A versatile stimuli-responsive functional biomaterial for pharmaceuticals and healthcare. Int J Biol Macromol 2024; 278:134817. [PMID: 39154696 DOI: 10.1016/j.ijbiomac.2024.134817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The present review is novel as it discusses the main findings of researchers on the topic and their implications, as well as highlights the emerging research in this particular area and its future prospective. The seeds of Flax (Linum usitatissimum) extrude mucilage (FSM) that has a diverse and wide range of applications, especially in the food industry and as a pharmaceutical ingredient. FSM has been blended with several food and dairy products to improve gelling ability, optical properties, taste, and user compliance. The FSM is recognized as a foaming, encapsulating, emulsifying, suspending, film-forming, and gelling agent for several pharmaceutical preparations and healthcare materials. Owing to stimuli (pH) -responsive swelling-deswelling characteristics, high swelling indices at different physiological pHs of the human body, and biocompatibility, FSM is considered a smart material for intelligent, targeted, and controlled drug delivery applications through conventional and advanced drug delivery systems. FSM has been modified through carboxymethylation, acetylation, copolymerization, and electrostatic complexation to get the desired properties for pharma, food, and healthcare products. The present review is therefore devoted to the isolation techniques, structural characterization, highly valuable properties for food and pharmaceutical industries, preclinical and clinical trials, pharmacological aspects, biomedical attributes, and patents of FSM.
Collapse
Affiliation(s)
| | - Gulzar Muhammad
- Department of Chemistry, GC University, Lahore 54000, Pakistan
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Fatima Akbar Sheikh
- College of Pharmacy, Niazi Medical and Dental College, Sargodha 40100, Pakistan
| |
Collapse
|
2
|
Aftab M, Javed F, Haider S, Khan R, Khan SU, Alam K, Amir A, Ullah F, Shah NA. Design and Characterization of Chitosan-Based Smart Injectable Hydrogel for Improved Sustained Release of Antinarcotics. Pharmaceuticals (Basel) 2024; 17:749. [PMID: 38931416 PMCID: PMC11206616 DOI: 10.3390/ph17060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The treatment adherence of narcotics-addicted individuals with reduced incidences of relapse can be enhanced by a sustained drug release formulation of antinarcotics. So far, different drug formulations have been reported with sustained drug release periods of 28 and 35 days. To further enhance this duration, different formulations of injectable hydrogels (IHs) have been developed by combining low molecular weight (LMW) and high molecular weight (HMW) chitosan (CS) with guar gum (GG) and crosslinking them by sodium bi phosphate dibasic. The structural, morphological, and physicochemical properties of LMW-CS IH, and HMW-CS IH were evaluated using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and rheological, swelling, and biodegradation analysis. The HMW-CS IH showed high crosslinking, increased thermal stability, high mechanical strength, elevated swelling, and low biodegradation. The antinarcotic drugs naltrexone (NTX) and disulfiram (DSF) were loaded separately into the HMW-CS IH and LMW-CS IH. The release of NTX and DSF was investigated in phosphate buffer saline (PBS) and ethanol (0.3%, 0.4%, and 0.5%) over a 56-day period using an UV spectrophotometer. The drug release data were tested in zero-order, first-order, and Korsemeyer-Peppas mathematical models. In PBS, all prepared formulations followed non-Fickian drug release, while in ethanol, only NTX HMW-CS IH followed non-Fickian release in all three different concentrations of ethanol.
Collapse
Affiliation(s)
- Maryam Aftab
- Department of Biosciences, COMSATS University, Park Road, Islamabad 45520, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan;
| | - Sajjad Haider
- Department of Chemical Engineering, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Rawaiz Khan
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Salah Uddin Khan
- College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Kamran Alam
- Separation and Conversation Technology, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium;
| | - Afreenish Amir
- Department of Microbiology, National Institute of Health, Islamabad 45500, Pakistan;
| | - Faheem Ullah
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
- School of Materials and Mineral Resources Engineering, Engineering Campus, University Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Naseer Ali Shah
- Department of Biosciences, COMSATS University, Park Road, Islamabad 45520, Pakistan
| |
Collapse
|
3
|
Goksen G, Demir D, Dhama K, Kumar M, Shao P, Xie F, Echegaray N, Lorenzo JM. Mucilage polysaccharide as a plant secretion: Potential trends in food and biomedical applications. Int J Biol Macromol 2023; 230:123146. [PMID: 36610576 DOI: 10.1016/j.ijbiomac.2023.123146] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Current trends are shifting away from using synthetic compounds in favor of discovering new natural component sources that will allow them to create goods that are healthful, environmentally friendly, sustainable, and profitable. The food industry, in light of these trends, has opted to look for safe natural ingredients that will allow the production of low-fat, artificial-additive-free, gluten-free, prebiotic, and fortified foods. Similarly, the pharmaceutical and medical industries have attempted to apply natural ingredients to address the challenges related to biomaterials more efficiently than synthetic ingredients. Against this background, plant mucilage has proven to be a polysaccharide with excellent health features and technological properties, useful for both food and biomedical applications. Many studies have shown that its inclusion in different food matrices improves the quality of the products obtained under appropriate reformulations. At the same time, plant mucilage has been indicated to be a very interesting matrix in biomedical field especially tissue engineering applications since it has been emerged to favor tissue regeneration with its highly biocompatible structure. This concise review discusses the most recent advances of the applications of plant mucilage in different foods as well as its recent use in biomedical field. In this context, firstly, a general definition of mucilage was made and information about plant-based mucilage, which is frequently used, about the plant parts they are found in, their content and how they are obtained are presented. Then, the use of mucilage in the food industry including bakery products, meat emulsions, fermented dairy products, ice cream, and other foods is presented with case studies. Afterwards, the use of plant mucilage in the biomedical field, which has attracted attention in recent years, especially in applications with tissue engineering approach such as scaffolds for tissue regeneration, wound dressings, drug delivery systems and pharmaceutical industry was evaluated.
Collapse
Affiliation(s)
- Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
4
|
Trombino S, Sole R, Di Gioia ML, Procopio D, Curcio F, Cassano R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023; 28:molecules28052107. [PMID: 36903352 PMCID: PMC10004334 DOI: 10.3390/molecules28052107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
The growing demand for drug carriers and green-technology-based tissue engineering materials has enabled the fabrication of different types of micro- and nano-assemblies. Hydrogels are a type of material that have been extensively investigated in recent decades. Their physical and chemical properties, such as hydrophilicity, resemblance to living systems, swelling ability and modifiability, make them suitable to be exploited for many pharmaceutical and bioengineering applications. This review deals with a brief account of green-manufactured hydrogels, their characteristics, preparations, importance in the field of green biomedical technology and their future perspectives. Only hydrogels based on biopolymers, and primarily on polysaccharides, are considered. Particular attention is given to the processes of extracting such biopolymers from natural sources and the various emerging problems for their processing, such as solubility. Hydrogels are catalogued according to the main biopolymer on which they are based and, for each type, the chemical reactions and the processes that enable their assembly are identified. The economic and environmental sustainability of these processes are commented on. The possibility of large-scale processing in the production of the investigated hydrogels are framed in the context of an economy aimed at waste reduction and resource recycling.
Collapse
|
5
|
Editorial on Special Issue: "Smart Polymer Hydrogels: Synthesis, Properties and Applications-Volume I". Gels 2023; 9:gels9020084. [PMID: 36826254 PMCID: PMC9956987 DOI: 10.3390/gels9020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Smart polymer hydrogels are soft materials formed by crosslinking with various covalent and non-covalent interactions [...].
Collapse
|
6
|
Entirely S-protected thiolated hydroxyethylcellulose: Design of a dual cross-linking approach for hydrogels. Eur J Pharm Biopharm 2022; 181:292-299. [PMID: 36427674 DOI: 10.1016/j.ejpb.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
AIM The aim of this study was the synthesis and evaluation of entirely S-protected thiolated hydroxyethylcellulose (HEC) with low and high viscosity, as well as thiolated poly-L-lysine (poly-L-Lys) used as dual-acting ionic as well as thiol-disulfide exchange mediated cross-linking hydrogel. METHODS Bis(mercaptosuccinic acid) was covalently attached to low and high viscous HECs via Fisher esterification, obtaining S-protected polymers. Poly-L-Lys-cysteine was synthesized via amidation of poly-L-Lys-HBr with cysteine (Cys). Thiolated polymers were examined in terms of cytotoxicity and rheological behavior of hydrogels containing these thiomers was evaluated with a cone-plate rheometer. RESULTS Thiomers showed less cytotoxicity compared to the corresponding unmodified polymers. Rheological studies showed that cross-linking occurred between the two polymers via thiol-disulfide exchange reactions facilitated by the complementary charges. Employing poly-L-Lys-Cys in a concentration of either 0.5 or 5% (m/v) resulted in a 34.5-fold or 17.3-fold as well as a 53.6-fold or 29.6-fold improvement in dynamic viscosity within 5 min at 37 °C on S-protected thiolated low and high viscous HEC, compared to the corresponding unmodified HECs, respectively. CONCLUSION By the combination of anionic S-protected thiolated polymers with a cationic thiolated polymer, dual-acting hydrogels exhibiting a time dependent increase in viscosity can be designed.
Collapse
|