1
|
Ngo PKT, Nguyen DN, Nguyen HP, Tran THH, Nguyen QND, Luu CH, Phan TH, Le PK, Phan VHG, Ta HT, Thambi T. Silk fibroin/chitosan/montmorillonite sponge dressing: Enhancing hemostasis, antimicrobial activity, and angiogenesis for advanced wound healing applications. Int J Biol Macromol 2024; 279:135329. [PMID: 39236943 DOI: 10.1016/j.ijbiomac.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Open wounds present a significant challenge in healthcare, requiring careful management to prevent infection and promote wound healing. Advanced wound dressings are critical need to enhance their hemostatic capabilities, antimicrobial properties, and ability to support angiogenesis and sustained moisture for optimal healing. This study introduces a flexible hemostatic dressing designed for open wounds, integrating chitosan (CS) for hemostasis and biocompatibility, silk fibroin (SF) for mechanical strength, and montmorillonite (MMT) for enhanced drug transport. The CSSF@MMT dressings showed promising mechanical strength and swift hemostasis. The CIP-loaded CSSF@MMT demonstrated sustained release for up to one week, exhibiting antibacterial properties against both Gram-positive and Gram-negative bacteria. In vitro cell migration assay demonstrated that erythropoietin-loaded CSSF@MMT dressings promoted the proliferation and migration of endothelial cells. Similarly, the chick embryo chorioallantoic membrane study indicated the same dressings exhibited a significant increase in vascular regeneration. This research suggests that the CSSF@MMT sponge dressing, incorporated with CIP and erythropoietin, holds promise in effectively halting bleeding, creating a protective environment, diminishing inflammation, and fostering wound tissue regeneration. This potential makes it a significant advancement in open wound care, potentially lowering the need for limb amputation and decreasing wound care burden worldwide.
Collapse
Affiliation(s)
- Phuong-Khanh Thi Ngo
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam
| | - Dieu Ngoc Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hong-Phuc Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thanh-Han Hoang Tran
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Quynh-Nhu Doan Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Cuong Hung Luu
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Thuy-Hien Phan
- Department of Endocrinology, People's Hospital 115, Ho Chi Minh City, Vietnam
| | - Phung K Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam
| | - V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| |
Collapse
|
2
|
Colombi S, Sáez I, Borras N, Estrany F, Pérez-Madrigal MM, García-Torres J, Morgado J, Alemán C. Glyoxal crosslinking of electro-responsive alginate-based hydrogels: Effects on the properties. Carbohydr Polym 2024; 337:122170. [PMID: 38710559 DOI: 10.1016/j.carbpol.2024.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/08/2024]
Abstract
To improve the features of alginate-based hydrogels in physiological conditions, Ca2+-crosslinked semi-interpenetrated hydrogels formed by poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid and alginate (PEDOT/Alg) were subjected to a treatment with glyoxal to form a dual ionic/covalent network. The covalent network density was systematically varied by considering different glyoxalization times (tG). The content of Ca2+ was significantly higher for the untreated hydrogel than for the glyoxalized ones, while the properties of the hydrogels were found to largely depend on tG. The porosity and swelling capacity decreased with increasing tG, while the stiffness and electrical conductance retention capacity increased with tG. The potentiodynamic response of the hydrogels notably depended on the amount of conformational restraints introduced by the glyoxal, which is a very short crosslinker. Thus, the re-accommodation of the polymer chains during the cyclic potential scans became more difficult with increasing number of covalent crosslinks. This information was used to improve the performance of untreated PEDOT/Alg as electrochemical sensor of hydrogen peroxide by simply applying a tG of 5 min. Overall, the control of the properties of glyoxalized hydrogels through tG is very advantageous and can be used as an on-demand strategy to improve the performance of such materials depending on the application.
Collapse
Affiliation(s)
- Samuele Colombi
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Isabel Sáez
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Nuria Borras
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Francesc Estrany
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Maria M Pérez-Madrigal
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - José García-Torres
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jorge Morgado
- Department of Bioengineering, Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Carlos Alemán
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Liu J, Wu W, Peng F, Gong D, Kang Y, Zhang Y, Liu C, Li Y, Zhao G, Qiu F, Zhang W. Size control of ropivacaine nano/micro-particles by soft-coating with peptide nanosheets for long-acting analgesia. Theranostics 2024; 14:2637-2655. [PMID: 38646642 PMCID: PMC11024846 DOI: 10.7150/thno.93322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Rationale: To meet the need of long-acting analgesia in postoperative pain management, slow-releasing formulations of local anesthetics (LAs) have been extensively investigated. However, challenges still remain in obtaining such formulations in a facile and cost-effective way, and a mechanism for controlling the release rate to achieve an optimal duration is still missing. Methods: In this study, nanosheets formed by a self-assembling peptide were used to encapsulate ropivacaine in a soft-coating manner. By adjusting the ratio between the peptide and ropivacaine, ropivacaine particles with different size were prepared. Releasing profile of particles with different size were studied in vitro and in vivo. The influence of particle size and ropivacaine concentration on effective duration and toxicity were evaluated in rat models. Results: Our results showed that drug release rate became slower as the particle size increased, with particles of medium size (2.96 ± 0.04 μm) exhibiting a moderate release rate and generating an optimal anesthetic duration. Based on this size, formulations at different ropivacaine concentrations generated anesthetic effect with different durations in rat sciatic nerve block model, with the 6% formulation generated anesthetic duration of over 35 h. Long-acting analgesia up to 48 h of this formulation was also confirmed in a rat total knee arthroplasty model. Conclusion: This study provided a facile strategy to prepare LA particles of different size and revealed the relationship between particle size, release rate and anesthetic duration, which provided both technical and theoretical supports for developing long-acting LA formulations with promising clinical application.
Collapse
Affiliation(s)
- Jing Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Weiwei Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Fei Peng
- Department of Anesthesiology, West China Hospital, Sichuan University, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Deying Gong
- Department of Anesthesiology, West China Hospital, Sichuan University, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Yi Kang
- Department of Anesthesiology, West China Hospital, Sichuan University, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Yujun Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Congyan Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Yuncheng Li
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Guoyan Zhao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Feng Qiu
- Department of Anesthesiology, West China Hospital, Sichuan University, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Wensheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| |
Collapse
|
4
|
Lin X, Shi J, Meng G, Pan Y, Liu Z. Effect of graphene oxide on sodium alginate hydrogel as a carrier triggering release of ibuprofen. Int J Biol Macromol 2024; 260:129515. [PMID: 38237826 DOI: 10.1016/j.ijbiomac.2024.129515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
The design and preparation of safe wound dressings with antibacterial and controlled drug release abilities is valuable in medicine. This research focuses on the fabrication of a hydrogel carrier with graphene oxide (GO)-triggered ibuprofen (IBU) release to control inflammation. The hydrogel was prepared by cross-linking the base polymer sodium alginate (SA) and functionalized GO. The morphology of the gel was observed by a scanning electron microscope (SEM), and its structure was analyzed through X-ray diffraction (XRD) and Fourier transform infrared reflection (FTIR) spectroscopy. The effects of GO on swelling capacity, IBU release behavior and antibacterial activity were investigated by using the prepared GO/SA hydrogel as a drug carrier and IBU as a drug model. In vitro studies confirmed that the GO/SA hydrogel had good antimicrobial activity and excellent cytotoxicity. The analysis of cumulative IBU release rates revealed that the addition of GO could promote the release of IBU, and the change in GO content did not have a prominent effect on IBU release. At the same time, the rate of IBU release from the GO/SA hydrogel was affected by near-infrared light. Under a light source, the release rate of IBU increased, and the release amount of IBU showed a clear stepwise increase under light on-off conditions. These results suggest that the GO/SA hydrogel could be a potential antibacterial and anti-inflammatory wound dressing.
Collapse
Affiliation(s)
- Xiuling Lin
- Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Jiali Shi
- Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Ge Meng
- Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yusong Pan
- Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Zhenying Liu
- Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
5
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Aversa R, Perrotta V, Wang C, Apicella A. Bio-Resorption Control of Magnesium Alloy AZ31 Coated with High and Low Molecular Weight Polyethylene Oxide (PEO) Hydrogels. Gels 2023; 9:779. [PMID: 37888352 PMCID: PMC10606464 DOI: 10.3390/gels9100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Magnesium AZ31 alloy has been chosen as bio-resorbable temporary prosthetic implants to investigate the degradation processes in a simulating body fluid (SBF) of the bare metal and the ones coated with low and high-molecular-weight PEO hydrogels. Hydrogel coatings are proposed to control the bioresorption rate of AZ31 alloy. The alloy was preliminary hydrothermally treated to form a magnesium hydroxide layer. 2 mm discs were used in bioresorption tests. Scanning electron microscopy was used to characterize the surface morphology of the hydrothermally treated and PEO-coated magnesium alloy surfaces. The variation of pH and the mass of Mg2+ ions present in the SBF corroding medium have been monitored for 15 days. Corrosion current densities (Icorr) and corrosion potentials (Ecorr) were evaluated from potentiodynamic polarisation tests on the samples exposed to the SBF solution. Kinetics of cumulative Mg ions mass released in the corroding solution have been evaluated regarding cations diffusion and mass transport parameters. The initial corrosion rates for the H- and L-Mw PEO-coated specimens were similar (0.95 ± 0.12 and 1.82 ± 0.52 mg/cm2day, respectively) and almost 4 to 5 times slower than that of the uncoated system (6.08 mg/cm2day). Results showed that the highly swollen PEO hydrogel coatings may extend into the bulk solution, protecting the coated metal and efficiently controlling the degradation rate of magnesium alloys. These findings focus more research effort on investigating such systems as tunable bioresorbable prosthetic materials providing idoneous environments to support cells and bone tissue repair.
Collapse
Affiliation(s)
- Raffaella Aversa
- Advanced Materials Lab, Department of Architecture and Industrial Design, University of Campania, Via San Lorenzo, 81031 Aversa, Italy; (R.A.); (V.P.)
| | - Valeria Perrotta
- Advanced Materials Lab, Department of Architecture and Industrial Design, University of Campania, Via San Lorenzo, 81031 Aversa, Italy; (R.A.); (V.P.)
| | - Chao Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, No. 37, Xueyuan Road, Beijing 100083, China;
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, No. 37, Xueyuan Road, Beijing 100083, China
| | - Antonio Apicella
- Advanced Materials Lab, Department of Architecture and Industrial Design, University of Campania, Via San Lorenzo, 81031 Aversa, Italy; (R.A.); (V.P.)
| |
Collapse
|
7
|
Flores-Céspedes F, Villafranca-Sánchez M, Fernández-Pérez M. Alginate-Bentonite-Based Hydrogels Designed to Obtain Controlled-Release Formulations of Dodecyl Acetate. Gels 2023; 9:gels9050388. [PMID: 37232979 DOI: 10.3390/gels9050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Dodecyl acetate (DDA), a volatile compound present in insect sex pheromones, was incorporated into alginate-based granules to obtain controlled-release formulations (CRFs). In this research, not only was the effect of adding bentonite to the basic alginate-hydrogel formulation studied, but also that of the encapsulation efficiency on the release rate of DDA in laboratory and field experiments. DDA encapsulation efficiency increased as the alginate/bentonite ratio increased. From the preliminary volatilization experiments, a linear relationship was found between the DDA release percentage and the amount of bentonite present in the alginate CRFs. Laboratory kinetic volatilization experiments showed that the selected alginate-bentonite formulation (DDAB75A10) exhibited a prolonged DDA release profile. The value of the diffusional exponent obtained from the Ritger and Peppas model (n = 0.818) indicated that the release process follows a non-Fickian or anomalous transport mechanism. Field volatilization experiments showed a steady release of DDA over time from the alginate-based hydrogels tested. This result, together with those obtained from the laboratory release experiments, allowed the obtainment of a set of parameters to improve the preparation of alginate-based CRFs for the use of volatile biological molecules, such as DDA, in agricultural biological control programs.
Collapse
Affiliation(s)
- Francisco Flores-Céspedes
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain
| | - Matilde Villafranca-Sánchez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain
| | - Manuel Fernández-Pérez
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Agrifood Campus of International Excellence (ceiA3), Crta. Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
8
|
Enache AC, Samoila P, Cojocaru C, Bele A, Bostanaru AC, Mares M, Harabagiu V. Amphiphilic Chitosan Porous Membranes as Potential Therapeutic Systems with Analgesic Effect for Burn Care. MEMBRANES 2022; 12:973. [PMID: 36295732 PMCID: PMC9611202 DOI: 10.3390/membranes12100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Eliminating or at least lessening the pain is a crucial aspect of burns management, as pain can negatively affect mental health and quality of life, and it can also induce a delay on wound healing. In this context, new amphiphilic chitosan 3D porous membranes were developed and investigated as burns therapeutic systems with analgesic effect for delivery of lidocaine as local anesthetic. The highly porous morphology of the membranes and the structural modifications were evidenced by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and infrared spectroscopy (FTIR). Improved compression mechanical properties, long-term hydrolytic degradation (28 days) evaluation and high swelling capacities (ranging from 8 to 22.6 g/g) indicate an increased capacity of the prepared membranes to absorb physiological fluids (burns exudate). Lidocaine in vitro release efficiency was favored by the decreased content of cross-linking agent (reaching maximum value of 95.24%) and the kinetic data modeling, indicating that lidocaine release occurs by quasi-Fickian diffusion. In addition to the in vitro evaluation of analgesic effect, lidocaine-loaded chitosan membranes were successfully investigated and proved antibacterial activity against most common pathogens in burns infections: Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Andra-Cristina Enache
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Petrisor Samoila
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Corneliu Cojocaru
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Adrian Bele
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Andra-Cristina Bostanaru
- Laboratory of Antimicrobial Chemotherapy, “Ion Ionescu de la Brad” University of Life Sciences, 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, “Ion Ionescu de la Brad” University of Life Sciences, 8 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Valeria Harabagiu
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
9
|
Phan VHG, Mathiyalagan R, Nguyen MT, Tran TT, Murugesan M, Ho TN, Huong H, Yang DC, Li Y, Thambi T. Ionically cross-linked alginate-chitosan core-shell hydrogel beads for oral delivery of insulin. Int J Biol Macromol 2022; 222:262-271. [PMID: 36150568 DOI: 10.1016/j.ijbiomac.2022.09.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Here, core-shell hydrogel beads for oral insulin delivery at intestine was reported, which was a target site for insulin absorption. The core-shell hydrogel beads were prepared using naturally derived alginate and chitosan polysaccharides by simple dropping technique. In order to effectively control leakage of insulin from core-shell hydrogel beads, insulin was embedded into the layered double hydroxides (LDHs). LDH/insulin-loaded complexes were firstly coated with chitosan, and then coated with alginate to generate core-shell hydrogel beads. The biocompatibility and angiogenic response of core-shell hydrogel beads were evaluated by direct contact of the beads with chick embryo chorioallantoic membrane, which indicates safety of the core-shell beads. The beads successfully retained the insulin within the core-shell structure at pH 1.2, indicating that insulin had a good protective effect in harsh acidic environments. Interestingly, insulin release starts at the simulated intestinal fluid (pH 6.8) and continue to release for 24 h in a sustained manner.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Minh-Thu Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thanh-Tuyen Tran
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Tuyet-Nhung Ho
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ha Huong
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang Province, PR China.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea; School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
10
|
Zhu S, Li Y, He Z, Ji L, Zhang W, Tong Y, Luo J, Yu D, Zhang Q, Bi Q. Advanced injectable hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2022; 10:954501. [PMID: 36159703 PMCID: PMC9493100 DOI: 10.3389/fbioe.2022.954501] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
The rapid development of tissue engineering makes it an effective strategy for repairing cartilage defects. The significant advantages of injectable hydrogels for cartilage injury include the properties of natural extracellular matrix (ECM), good biocompatibility, and strong plasticity to adapt to irregular cartilage defect surfaces. These inherent properties make injectable hydrogels a promising tool for cartilage tissue engineering. This paper reviews the research progress on advanced injectable hydrogels. The cross-linking method and structure of injectable hydrogels are thoroughly discussed. Furthermore, polymers, cells, and stimulators commonly used in the preparation of injectable hydrogels are thoroughly reviewed. Finally, we summarize the research progress of the latest advanced hydrogels for cartilage repair and the future challenges for injectable hydrogels.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Li
- Zhejiang University of Technology, Hangzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Yu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qiong Zhang
- Center for Operating Room, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Gene Regulations upon Hydrogel-Mediated Drug Delivery Systems in Skin Cancers-An Overview. Gels 2022; 8:gels8090560. [PMID: 36135270 PMCID: PMC9498739 DOI: 10.3390/gels8090560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence of skin cancer has increased dramatically in recent years, particularly in Caucasian populations. Specifically, the metastatic melanoma is one of the most aggressive cancers and is responsible for more than 80% of skin cancer deaths around the globe. Though there are many treatment techniques, and drugs have been used to cure this belligerent skin cancer, the side effects and reduced bioavailability of drug in the targeted area makes it difficult to eradicate. In addition, cellular metabolic pathways are controlled by the skin cancer driver genes, and mutations in these genes promote tumor progression. Consequently, the MAPK (RAS-RAF-MEK-ERK pathway), WNT and PI3K signaling pathways are found to be important molecular regulators in melanoma development. Even though hydrogels have turned out to be a promising drug delivery system in skin cancer treatment, the regulations at the molecular level have not been reported. Thus, we aimed to decipher the molecular pathways of hydrogel drug delivery systems for skin cancer in this review. Special attention has been paid to the hydrogel systems that deliver drugs to regulate MAPK, PI3K-AKT-mTOR, JAK-STAT and cGAS-STING pathways. These signaling pathways can be molecular drivers of skin cancers and possible potential targets for the further research on treatment of skin cancers.
Collapse
|