1
|
Shehata TM, Aldhubiab B, Elsewedy HS. Virgin Coconut Oil-based Nanostructured Lipid Carrier Improves the Hypolipidemic Effect of Rosuvastatin. Int J Nanomedicine 2024; 19:7945-7961. [PMID: 39130688 PMCID: PMC11313597 DOI: 10.2147/ijn.s463750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Background Monitoring noncommunicable diseases is regarded as a critical concern that has to be managed in order to avoid a wide variety of complications such as increasing blood lipid levels known as dyslipidemia. Statin drugs, mostly, Rosuvastatin (RSV) was investigated for its effectiveness in treating dyslipidemia. However, reaching the most efficient treatment is essential and improving the effect of RSV is crucial. Therefore, a combination therapy was a good approach for achieving significant benefit. Although RSV is hydrophobic, which would affect its absorption and bioavailability following oral administration, overcoming this obstacle was important. Purpose To that end, the purpose of the present investigation was to incorporate RSV into certain lipid-based nanocarriers, namely, nanostructured lipid carrier (NLC) prepared with virgin coconut oil (CCO). Methods The optimized RSV-NLC formula was selected, characterized and examined for its in vitro, kinetic, and stability profiles. Eventually, the formula was investigated for its in vivo hypolipidemic action. Results The optimized NLC formulation showed a suitable particle size (279.3±5.03 nm) with PDI 0.237 and displayed good entrapment efficiency (75.6±1.9%). Regarding in vitro release, it was efficiently prolonged for 24 h providing 93.7±1.47%. The optimized formula was established to be stable after 3 months storage at two different conditions; 4°C and 25°C. Importantly, including CCO in the development of RSV-NLC could impressively enhance lowering total cholesterol level in obese rat models, which endorse the potential synergistic action between RSV and CCO. Conclusion The study could elucidate the impact of developing NLC using CCO for improving RSV anti-hyperlipidemic activity.
Collapse
Affiliation(s)
- Tamer M Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 36362, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 36362, Saudi Arabia
| | - Heba S Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 11597, Saudi Arabia
| |
Collapse
|
2
|
Balmanno A, Falconer JR, Ravuri HG, Mills PC. Strategies to Improve the Transdermal Delivery of Poorly Water-Soluble Non-Steroidal Anti-Inflammatory Drugs. Pharmaceutics 2024; 16:675. [PMID: 38794337 PMCID: PMC11124993 DOI: 10.3390/pharmaceutics16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has the potential to overcome some of the major disadvantages relating to oral NSAID usage, such as gastrointestinal adverse events and compliance. However, the poor solubility of many of the newer NSAIDs creates challenges in incorporating the drugs into formulations suitable for application to skin and may limit transdermal permeation, particularly if the goal is therapeutic systemic drug concentrations. This review is an overview of the various strategies used to increase the solubility of poorly soluble NSAIDs and enhance their permeation through skin, such as the modification of the vehicle, the modification of or bypassing the barrier function of the skin, and using advanced nano-sized formulations. Furthermore, the simple yet highly versatile microemulsion system has been found to be a cost-effective and highly successful technology to deliver poorly water-soluble NSAIDs.
Collapse
Affiliation(s)
- Alexandra Balmanno
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| | - James R. Falconer
- School of Pharmacy, The University of Queensland, Dutton Park Campus, Woolloongabba, QLD 4102, Australia;
| | - Halley G. Ravuri
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton Campus, Gatton, QLD 4343, Australia;
| |
Collapse
|
3
|
Elsewedy HS, Shehata TM, Genedy SM, Siddiq KM, Asiri BY, Alshammari RA, Bukhari SI, Kola-Mustapha AT, Ramadan HA, Soliman WE. Enhancing the Topical Antibacterial Activity of Fusidic Acid via Embedding into Cinnamon Oil Nano-Lipid Carrier. Gels 2024; 10:268. [PMID: 38667687 PMCID: PMC11049292 DOI: 10.3390/gels10040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Presently, antimicrobial resistance is of great risk to remarkable improvements in health conditions and infection management. Resistance to various antibiotics has been considered a great obstacle in their usage, necessitating alternative strategies for enhancing the antibacterial effect. Combination therapy has been recognized as a considerable strategy that could improve the therapeutic influence of antibacterial agents. Therefore, the aim of this study was to combine the antibacterial action of compounds of natural origin like fusidic acid (FA) and cinnamon essential oil (CEO) for synergistic effects. A distinctive nanoemulsion (NE) was developed using cinnamon oil loaded with FA. Applying the Box-Behnken design (BBD) approach, one optimized formula was selected and integrated into a gel base to provide an FA-NE-hydrogel for optimal topical application. The FA-NE-hydrogel was examined physically, studied for in vitro release, and investigated for stability upon storage at different conditions, at room (25 °C) and refrigerator (4 °C) temperatures, for up to 3 months. Ultimately, the NE-hydrogel preparation was inspected for its antibacterial behavior using multidrug-resistant bacteria and checked by scanning electron microscopy. The FA-NE-hydrogel formulation demonstrated a pH (6.32), viscosity (12,680 cP), and spreadability (56.7 mm) that are acceptable for topical application. The in vitro release could be extended for 6 h, providing 52.0%. The formulation was stable under both test conditions for up to 3 months of storage. Finally, the FA-NE-hydrogel was found to inhibit the bacterial growth of not only Gram-positive but also Gram-negative bacteria. The inhibition was further elucidated by a scanning electron micrograph, indicating the efficiency of CEO in enhancing the antibacterial influence of FA when combined in an NE system.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Shaymaa M. Genedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Khuzama M. Siddiq
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Bushra Y. Asiri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Rehab A. Alshammari
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Diriyah 13713, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adeola T. Kola-Mustapha
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Heba A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
| | - Wafaa E. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Saudi Arabia
| |
Collapse
|
4
|
Dahma Z, Torrado-Salmerón C, Álvarez-Álvarez C, Guarnizo-Herrero V, Martínez-Alonso B, Torrado G, Torrado-Santiago S, de la Torre-Iglesias PM. Topical Meloxicam Hydroxypropyl Guar Hydrogels Based on Low-Substituted Hydroxypropyl Cellulose Solid Dispersions. Gels 2024; 10:207. [PMID: 38534625 DOI: 10.3390/gels10030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Meloxicam (MX) is a poorly water-soluble drug with severe gastrointestinal side effects. Topical hydrogel of hydroxypropyl guar (HPG) was formulated using a solid dispersion (SD) of MX with hydroxypropyl cellulose (LHPC) as an alternative to oral administration. The development of a solid dispersion with an adequate MX:LHPC ratio could increase the topical delivery of meloxicam. Solid dispersions showed high MX solubility values and were related to an increase in hydrophilicity. The drug/polymer and polymer/polymer interactions of solid dispersions within the HPG hydrogels were evaluated by SEM, DSC, FTIR, and viscosity studies. A porous structure was observed in the solid dispersion hydrogel MX:LHPC (1:2.5) and its higher viscosity was related to a high increase in hydrogen bonds among the -OH groups from LHPC and HPG with water molecules. In vitro drug release studies showed increases of 3.20 and 3.97-fold for hydrogels with MX:LHPC ratios of (1:1) and (1:2.5), respectively, at 2 h compared to hydrogel with pure MX. Finally, a fitting transition from zero to first-order model was observed for these hydrogels containing solid dispersions, while the n value of Korsmeyer-Peppas model indicated that release mechanism is governed by diffusion through an important relaxation of the polymer.
Collapse
Affiliation(s)
- Zaid Dahma
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Covadonga Álvarez-Álvarez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain
| | - Borja Martínez-Alonso
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain
| | - Guillermo Torrado
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33600, 28805 Madrid, Spain
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Instituto Universitario de Farmacia Industrial, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
5
|
Patil AS, Chougale SS, Kokatanr U, Hulyalkar S, Hiremath RD, Japti V, Masareddy R. Formulation and evaluation of itraconazole-loaded nanoemulgel for efficient topical delivery to treat fungal infections. Ther Deliv 2024; 15:165-179. [PMID: 38282577 DOI: 10.4155/tde-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Aim: The clinical application of conventional oral dosage form of itraconazole is limited due to its poor bioavailability. The aim of the study was to develop nanoemulgel of Itraconazole for topical delivery. Method: Nanoemulsions were prepared, optimized and further incorporated into a gel and evaluated for homogeneity, pH, viscosity, spreadability, in vitro drug release and skin irritation studies. Results: Cumulative drug release from nanoemulsions was within the range of 37.24 to 47.63% at 10 h. Drug release % for all the nanoemulgel formulations at10 h was 32.39, 39.75 and 45.9% respectively. Nanoemulgel was non-irritant as demonstrated by skin irritation studies in animals. Conclusion: Itraconazole nanoemulgels were proved to be potential for effective topical delivery of drug with enhanced bioavailability.
Collapse
Affiliation(s)
- Archana S Patil
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Samradni S Chougale
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Umashri Kokatanr
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Sujay Hulyalkar
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Ravindra D Hiremath
- KDCA's Institute of Pharmacy (Government Aided Institute) Airport Road, Ujalaiwadi, Kolhapur, 416004, Maharashtra, India
| | - Veerkumar Japti
- Department of Quality Assurance, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| | - Rajashree Masareddy
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education & Research, Belagavi, 590010, Karnataka, India
| |
Collapse
|
6
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
7
|
Lal DK, Kumar B, Saeedan AS, Ansari MN. An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery. Pharmaceutics 2023; 15:pharmaceutics15041187. [PMID: 37111672 PMCID: PMC10145625 DOI: 10.3390/pharmaceutics15041187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The anti-inflammatory drugs that are generally available possess the disadvantage of hydrophobicity, which leads to poor permeability and erratic bioavailability. Nanoemulgels (NEGs) are novel drug delivery systems that aim to improve the solubility and permeability of drugs across the biological membrane. The nano-sized droplets in the nanoemulsion enhance the permeation of the formulation, along with surfactants and co-surfactants that act as permeation enhancers and can further improve permeability. The hydrogel component of NEG helps to increase the viscosity and spreadability of the formulation, making it ideal for topical application. Moreover, oils that have anti-inflammatory properties, such as eucalyptus oil, emu oil and clove oil, are used as oil phases in the preparation of the nanoemulsion, which shows a synergistic effect with active moiety and enhances its overall therapeutic profile. This leads to the creation of hydrophobic drugs that possess enhanced pharmacokinetic and pharmacodynamic properties, and simultaneously avoid systemic side effects in individuals with external inflammatory disorders. The nanoemulsion's effective spreadability, ease of application, non-invasive administration, and subsequent ability to achieve patient compliance make it more suitable for topical application in the combat of many inflammatory disorders, such as dermatitis, psoriasis, rheumatoid arthritis, osteoarthritis and so on. Although the large-scale practical application of NEG is limited due to problems regarding its scalability and thermodynamic instability, which arise from the use of high-energy approaches during the production of the nanoemulsion, these can be resolved by the advancement of an alternative nanoemulsification technique. Considering the potential advantages and long-term benefits of NEGs, the authors of this paper have compiled a review that elaborates the potential significance of utilizing nanoemulgels in a topical delivery system for anti-inflammatory drugs.
Collapse
Affiliation(s)
- Diwya Kumar Lal
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
8
|
Comparative study on the topical and transdermal delivery of diclofenac incorporated in nano-emulsions, nano-emulgels, and a colloidal suspension. Drug Deliv Transl Res 2022; 13:1372-1389. [PMID: 36525200 DOI: 10.1007/s13346-022-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
Transdermal delivery of active pharmaceutical ingredients (APIs) can be challenging, since the skin possesses a rate-limiting barrier, which may be overcome when APIs possess certain ideal physicochemical properties. The lack thereof would require that APIs be included in drug delivery vehicles to enhance skin permeation. Hence, diclofenac was incorporated into various drug delivery vehicles (i.e., nano-emulsions, nano-emulgels, and a colloidal suspension containing drug-loaded nanoparticles) to investigate the transdermal delivery thereof, while nano-emulsions and nano-emulgels had varying concentrations of evening primrose oil (EPO). The aim of the study was to compare the topical and transdermal diclofenac delivery from the different types of vehicles and to investigate the influence the different EPO concentrations had on diclofenac delivery. After characterization, membrane release studies were performed (to determine whether the API was successfully released from the vehicle) followed by in vitro skin diffusion studies and tape stripping (to establish whether the vehicles assisted the API in reaching the target site (transdermal delivery)). Lastly, cytotoxicity studies were conducted via methyl thiazolyl tetrazolium (MTT) and neutral red (NR) assays on human keratinocyte (HaCaT) cells. Results showed minimal cytotoxic effects at concentrations equivalent to that which had permeated through the skin, while the membrane release and in vitro skin diffusion studies indicated that the nano-emulsions and the 10% EPO vehicles increased API release and diffusion when compared to the other vehicles. However, the colloidal suspension had the highest concentrations of API within the skin. Hence, all the vehicles were non-toxic and effectively delivered diclofenac through the transdermal route.
Collapse
|
9
|
Diab SE, Tayea NA, Elwakil BH, Gad AAEM, Ghareeb DA, Olama ZA. Novel Amoxicillin-Loaded Sericin Biopolymeric Nanoparticles: Synthesis, Optimization, Antibacterial and Wound Healing Activities. Int J Mol Sci 2022; 23:11654. [PMID: 36232955 PMCID: PMC9570309 DOI: 10.3390/ijms231911654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Infected wounds are a major threat among diabetic patients. Technological advancements are currently increasing the number of new adjunctive therapies that may be potent agents for speeding recovery, lowering the amputation rate and limiting infection recurrences. A novel formula with promising antibacterial activity, namely sericin/propolis/Amoxicillin nanoparticles, was assessed as a potent treatment of infected wounds in normal and diabetic rats. Skin wound healing efficiency was assessed through wound healing scorings, bacterial load assessment and histological examinations. It was revealed that upon using sericin/propolis/Amoxicillin nanoparticles, complete wound healing was successfully achieved after 10 and 15 days postinjury for nondiabetic and diabetic rats, respectively. However, the bacterial load in the induced infected wounds was extremely low (0-10 CFU/mL) after 15 days post-treatment. The histological studies revealed that the dermis was more organized with new matrix deposition, and mature collagen fibers were observed among the treated animal groups. The present study is the first preclinical study which reported the importance of silk sericin in the form of nano-sericin/propolis loaded with Amoxicillin as an effective treatment against bacterial wound infections.
Collapse
Affiliation(s)
- Shaimaa E. Diab
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Nourhan A. Tayea
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Bassma H. Elwakil
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21500, Egypt
| | - Abir Abd El Mageid Gad
- Applied Entomology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Doaa A. Ghareeb
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Zakia A. Olama
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
10
|
Sevinç-Özakar R, Seyret E, Özakar E, Adıgüzel MC. Nanoemulsion-Based Hydrogels and Organogels Containing Propolis and Dexpanthenol: Preparation, Characterization, and Comparative Evaluation of Stability, Antimicrobial, and Cytotoxic Properties. Gels 2022; 8:578. [PMID: 36135290 PMCID: PMC9498717 DOI: 10.3390/gels8090578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Recently, nanoemulsion-based gels have become very popular for dermal drug delivery, overcoming the disadvantages of conventional semi-solid drug forms. The aim of this study is to prepare and characterize nanoemulsion-based hydrogels and organogels containing combined propolis and dexpanthenol, and to compare their stability, antimicrobial, and cytotoxicity properties. Within the scope of characterization studies, organoleptic properties, drug content, morphology, pH, gel-sol conversion temperature, spreadability, viscosity, FT-IR, and release properties were evaluated in hydrogels and organogels. The characterization studies carried out were subjected to short-term stability evaluation at room temperature and refrigerator for 3 months. While no phase separation was observed in any of the formulations kept in the refrigerator, phase separation was observed in four formulations kept at room temperature. The release study successfully obtained an extended release for propolis and dexpanthenol. In the antimicrobial susceptibility study, Hydrogel 1 showed activity against S. aureus, while Organogel 1 showed activity against both S. aureus and S. epidermidis. In the cytotoxicity study against HDFa cells, both Hydrogel 1 and Organogel 1 were found to be nontoxic at low doses. These hydrogels and organogels, which contain propolis and dexpanthenol in combination for the first time, are promising systems that can be used in wound and burn models in the future.
Collapse
Affiliation(s)
- Rukiye Sevinç-Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
| | - Emrah Seyret
- Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
| | - Emrah Özakar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey
| | - Mehmet Cemal Adıgüzel
- Department of Microbiology, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
11
|
Development and Optimization of Nigella sativa Nanoemulsion Loaded with Pioglitazone for Hypoglycemic Effect. Polymers (Basel) 2022; 14:polym14153021. [PMID: 35893989 PMCID: PMC9332742 DOI: 10.3390/polym14153021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder associated with an increased blood glucose level. The world health burden of DM has increased as a result of numerous causes that necessitates suitable treatment. Pioglitazone (PGZ) is a generally prescribed medication for managing type II diabetes. However, its low solubility creates complications for its formulation. Therefore, the aim of the current study was to incorporate PGZ into a nanoemulsion (NE) formulation prepared with Nigella sativa oil (NSO) to boost the action of PGZ. To our knowledge, no previous study has addressed the combination and synergistic effect of PGZ and NSO as a hypoglycemic NE formulation intended for oral administration. An experiment was designed to test several PGZ-loaded NE formulations, varying factors such as NSO, surfactant and co-surfactant concentrations. These factors were investigated for their influence on responses including particle size and in vitro release. An optimized PGZ-loaded NE was selected and examined for its morphology, kinetic activity and stability. Further, the anti-diabetic effect of the optimized formulation was evaluated using diabetically induced rats. The optimized formula exhibited a good particle size of 167.1 nm and in vitro release of 89.5%. A kinetic study revealed that the drug release followed the Korsmeyer–Peppas mechanism. Additionally, the PGZ-loaded NE formulation was found to be stable, showing non-significant variation in the evaluated parameters when stored at 4 and 25 °C for a period of 3 months. In vivo investigation of the PGZ-loaded NE formulation showed a significant reduction in blood glucose level, which appeared to be enhanced by the presence of NSO. In conclusion, NS-NE could be a promising nanocarrier for enhancing the hypoglycemic effect of PGZ.
Collapse
|
12
|
Thermosensitive Hydrogels Loaded with Resveratrol Nanoemulsion: Formulation Optimization by Central Composite Design and Evaluation in MCF-7 Human Breast Cancer Cell Lines. Gels 2022; 8:gels8070450. [PMID: 35877535 PMCID: PMC9318454 DOI: 10.3390/gels8070450] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 02/01/2023] Open
Abstract
The second most common cause of mortality among women is breast cancer. A variety of natural compounds have been demonstrated to be beneficial in the management of various malignancies. Resveratrol is a promising anticancer polyphenolic compound found in grapes, berries, etc. Nevertheless, its low solubility, and hence its low bioavailability, restrict its therapeutic potential. Therefore, in our study, we developed a thermosensitive hydrogel formulation loaded with resveratrol nanoemulsion to enhance its bioavailability. Initially, resveratrol nanoemulsions were formulated and optimized utilizing a central composite-face-centered design. The independent variables for optimization were surfactant level, homogenization speed, and time, while the size and zeta potential were the dependent variables. The optimized nanoemulsion formulation was converted into a sensitive hydrogel using poloxamer 407. Rheological studies proved the formation of gel consistency at physiological temperature. Drug loading efficiency and in vitro drug release from gels were also analyzed. The drug release mechanisms from the gels were assessed using various mathematical models. The effect of the optimized thermosensitive resveratrol nanoemulsion hydrogel on the viability of human breast cancer cells was tested using MCF-7 cancer cell lines. The globule size of the selected formulation was 111.54 ± 4.16 nm, with a zeta potential of 40.96 ± 3.1 mV. Within 6 h, the in vitro release profile demonstrated a release rate of 80%. According to cell line studies, the produced hydrogel of resveratrol nanoemulsion was cytotoxic to breast cancer cells. Overall, the results proved the developed nanoemulsion-loaded thermosensitive hydrogel is a promising platform for the effective delivery of resveratrol for the management of breast cancer.
Collapse
|
13
|
Tea Tree Oil Nanoemulsion-Based Hydrogel Vehicle for Enhancing Topical Delivery of Neomycin. Life (Basel) 2022; 12:life12071011. [PMID: 35888099 PMCID: PMC9317510 DOI: 10.3390/life12071011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
The present investigation aims to improve the antimicrobial influence of certain antibacterial drugs, namely, neomycin (NEO), exploiting the benefits of natural oils such as tea tree oil (TTO). Therefore, a distinctive nanolipid formulation, namely, a nanoemulsion (NE), was developed using a Central Composite Factorial Design (CCD) approach depending on the amount of TTO and tween 80 as surfactant. The optimized NEO-NE formula exhibiting minimum globular size and maximum in vitro release was selected. For efficient topical delivery, NEO-NE was incorporated into a pre-formulated hydrogel. The developed NEO-NE-hydrogel was characterized by its physical characteristics such as pH, viscosity, and spreadability. Next, it was tested for stability under different conditions for 3 months. Ultimately, an irritation test was conducted followed by an antibacterial examination. The preparation demonstrated acceptable properties to be successfully applied topically. It showed non-significant changes in stability in both conditions up to 3 months storage when compared to a fresh preparation. It exhibited no irritation when applied on hairless animal skin. Finally, TTO revealed a good inhibition for the bacterial growth that could improve the influence of NEO antibacterial activity, indicating the efficiency of NE containing NEO prepared with TTO to be a promising antibacterial nanocarrier.
Collapse
|
14
|
Elsewedy HS, Shehata TM, Soliman WE. Shea Butter Potentiates the Anti-Bacterial Activity of Fusidic Acid Incorporated into Solid Lipid Nanoparticle. Polymers (Basel) 2022; 14:2436. [PMID: 35746012 PMCID: PMC9228747 DOI: 10.3390/polym14122436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Fusidic acid (FA) is an efficient anti-bacterial drug proven to be efficient against a wide range of bacteria. Nevertheless, the main restriction in its formulation is the limited solubility. To avoid such an obstacle, the drug is incorporated into the lipid core of the nanolipid formulation. Consequently, the present study was an attempt to formulate nanolipid preparation, mainly, solid lipid nanoparticle (SLN) integrating FA. FA-SLN was prepared using shea butter as a lipid phase owing to its reported anti-bacterial activity. Different FA-SLNs were fabricated using the central composite design (CCD) approach. The optimized formula was selected and integrated into a hydrogel base to be efficiently used topically. FA-SLN-hydrogel was evaluated for its character, morphology, in vitro release and stability. The formula was examined for irritation reaction and finally evaluated for its anti-bacterial performance. The optimized formula showed particle size 283.83 nm and entrapment 73.057%. The formulated FA-SLN-hydrogel displayed pH 6.2, viscosity 15,610 cP, spreadability 51.1 mm and in vitro release 64.6% following 180 min. FA-SLN-hydrogel showed good stability for three months at different conditions (room temperature and refrigerator). It exhibited no irritation reaction on the treated rats. Eventually, shea butter displayed a noteworthy effect against bacterial growth that improved the effect of FA. This would indicate prospective anti-bacterial activity of FA when combined with shea butter in SLN formulation as a promising nanocarrier.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Ash Sharqiyah, Zagazig 44519, Egypt
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
| |
Collapse
|