1
|
Ansary A, Osman A, El-Khouly ME. Doxorubicin-loaded pH-responsive porphyrin-derived carbon dots as a promising biocompatible drug delivery system for effective chemotherapy of breast cancer. RSC Adv 2025; 15:6457-6473. [PMID: 40017647 PMCID: PMC11864211 DOI: 10.1039/d4ra09058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Doxorubicin (DOX), a widely used chemotherapy drug for breast cancer, suffers from limitations such as non-specific toxicity and drug resistance. To address these challenges, we developed a novel drug delivery system (DDS) using porphyrin-derived carbon dots (CDs) as carriers for DOX. Porphyrin-based CDs were synthesized solvothermally from tetrakis(4-carboxyphenyl) porphyrin (TCPP) and urea. DOX was non-covalently loaded onto the CDs to form the DOX@CDs nanocomposite. The resulting CDs exhibited desirable properties like excellent water solubility, stability, and biocompatibility. Moreover, the DOX@CDs complex showed a high drug loading efficiency of 93% and a pH-responsive release profile, with enhanced release at acidic tumor microenvironments. The DOX@CDs nanocomposite demonstrated significantly improved cytotoxicity against human breast cancer MCF-7 and MDA-MB-231 cell lines (at IC50 values 24.08 ± 1.446 and 10.587 ± 0.815 μg mL-1) compared to free DOX (at IC50 values = 262.96 ± 1.807 and 261.6 ± 0.907 μg mL-1). Analysis by fluorescence microscopy and flow cytometry demonstrated that the enhanced cytotoxicity of the DOX@CDs complex compared to free DOX correlated with its greater cellular uptake and localization in cancerous cells. Notably, the nanocomposite exhibited reduced hemolytic activity, indicating enhanced biocompatibility. Our findings suggest that porphyrin-derived CDs hold promise as a safe and effective nanocarrier for targeted DOX delivery, offering a potential strategy to improve the therapeutic efficacy of breast cancer chemotherapy.
Collapse
Affiliation(s)
- Abeer Ansary
- Biotechnology Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology New Borg El-Arab City Alexandria Egypt
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh Egypt
| | - Ahmed Osman
- Biotechnology Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology New Borg El-Arab City Alexandria Egypt
| | - Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
2
|
Lalebeigi F, Alimohamadi A, Afarin S, Aliabadi HAM, Mahdavi M, Farahbakhshpour F, Hashemiaval N, Khandani KK, Eivazzadeh-Keihan R, Maleki A. Recent advances on biomedical applications of gellan gum: A review. Carbohydr Polym 2024; 334:122008. [PMID: 38553201 DOI: 10.1016/j.carbpol.2024.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Gellan gum (GG) has attracted considerable attention as a versatile biopolymer with numerous potential biological applications, especially in the fields of tissue engineering, wound healing, and cargo delivery. Due to its distinctive characteristics like biocompatibility, biodegradability, nontoxicity, and gel-forming ability, GG is well-suited for these applications. This review focuses on recent research on GG-based hydrogels and biocomposites and their biomedical applications. It discusses the incorporation of GG into hydrogels for controlled drug release, its role in promoting wound healing processes, and its potential in tissue engineering for various tissues including bone, retina, cartilage, vascular, adipose, and cardiac tissue. It provides an in-depth analysis of the latest findings and advancements in these areas, making it a valuable resource for researchers and professionals in these fields.
Collapse
Affiliation(s)
- Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Shahin Afarin
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Farahbakhshpour
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Neginsadat Hashemiaval
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Kimia Kalantari Khandani
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
3
|
Wang L, Wang Y, Ye Z, Yu Y, Wang C, Qiu L, Du X, Zhou S, Wang J, Jiang P. Preparation of Liposome Gel by Calcium Cross-Linking Induces the Long-Term Release of DOX to Improve the Antitumor Effect. Mol Pharm 2024; 21:2394-2405. [PMID: 38647653 DOI: 10.1021/acs.molpharmaceut.3c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Doxorubicin (DOX) is one of the most commonly used anticancer drugs; however, its clinical application is greatly limited due to its toxicity and chemotherapy resistance. The delivery of DOX by liposomes (Lipos) can improve the blood circulation time in vivo and reduce toxic side effects, but the drug's accumulation in the tumor is often insufficient for effective treatment. In this study, we present a calcium cross-linked liposome gel for the encapsulation of DOX, demonstrating its superior long-term release capabilities compared to conventional Lipos. By leveraging this enhanced long-term release, we can enhance drug accumulation within tumors, ultimately leading to improved antitumor efficacy. Lipos were prepared using the thin-film dispersion method in this study. We utilized the ion-responsiveness of glutathione-gelatin (GSH-GG) to form the gel outside the Lipos and named the nanoparticles coated with GSH-GG on the outside of Lipos as Lipos@GSH-GG. The average size of Lipos@GSH-GG was around 342.9 nm, with a negative charge of -25.6 mV. The in vitro experiments revealed that Lipos@GSH-GG exhibited excellent biocompatibility and slower drug release compared to conventional Lipos. Further analysis of cellular uptake and cytotoxicity demonstrated that Lipos@GSH-GG loading DOX (DOX&Lipos@GSH-GG) exhibited superior long-term release effects and lower toxic side effects compared to Lipos loading DOX (DOX&Lipos). Additionally, the findings regarding the long-term release effect in vivo and the tumor accumulation within tumor-bearing mice of Lipos@GSH-GG suggested that, compared to Lipos, it demonstrated superior long-term release capabilities and achieved greater drug accumulation within tumors. In vivo antitumor efficacy experiments showed that DOX&Lipos@GSH-GG demonstrated superior antitumor efficacy to DOX&Lipos. Our study highlights Lipos@GSH-GG as a promising nanocarrier with the potential to enhance efficacy and safety by means of long-term release effects and may offer an alternative approach for effective antitumor therapy in the future.
Collapse
Affiliation(s)
- Long Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yi Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Zixuan Ye
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yitong Yu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xuancheng Du
- School of Physics, Shandong University, Jinan 250100, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Omidian H, Wilson RL. Long-Acting Gel Formulations: Advancing Drug Delivery across Diverse Therapeutic Areas. Pharmaceuticals (Basel) 2024; 17:493. [PMID: 38675454 PMCID: PMC11053897 DOI: 10.3390/ph17040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
This multifaceted landscape of long-acting gels in diverse medical fields, aims to enhance therapeutic outcomes through localized treatment and controlled drug release. The objective involves advancements spanning cancer treatment, immunotherapy, diabetes management, neuroendocrine disorders, ophthalmic applications, contraception, HIV/AIDS treatment, chronic diseases, wound care, and antimicrobial treatments. It explores the potential of long-acting gels to offer sustained and extended drug release, targeted therapy, and innovative administration routes while addressing limitations such as scalability challenges and regulatory hurdles. Future directions focus on personalized therapies, biodegradability, combination therapies, interdisciplinary innovation, regulatory considerations, and patient-centric development. This comprehensive review highlights the pivotal role of long-acting gels in transforming therapeutic approaches and improving patient outcomes across various medical conditions.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
5
|
Abdl Aali RAK, Al-Sahlany STG. Gellan Gum as a Unique Microbial Polysaccharide: Its Characteristics, Synthesis, and Current Application Trends. Gels 2024; 10:183. [PMID: 38534601 PMCID: PMC10970089 DOI: 10.3390/gels10030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024] Open
Abstract
Gellan gum (GG) is a linear, negatively charged exopolysaccharide that is biodegradable and non-toxic. When metallic ions are present, a hard and transparent gel is produced, which remains stable at a low pH. It exhibits high water solubility, can be easily bio-fabricated, demonstrates excellent film/hydrogel formation, is biodegradable, and shows biocompatibility. These characteristics render GG a suitable option for use in food, biomedical, and cosmetic fields. Thus, this review paper offers a concise summary of microbial polysaccharides. Moreover, an in-depth investigation of trends in different facets of GG, such as biosynthesis, chemical composition, and physical and chemical properties, is emphasized. In addition, this paper highlights the process of extracting and purifying GG. Furthermore, an in-depth discussion of the advantages and disadvantages of GG concerning other polysaccharides is presented. Moreover, the utilization of GG across different industries, such as food, medicine, pharmaceuticals, cosmetics, etc., is thoroughly examined and will greatly benefit individuals involved in this field who are seeking fresh opportunities for innovative projects in the future.
Collapse
|
6
|
In situ gelling drug delivery systems for topical drug delivery. Eur J Pharm Biopharm 2023; 184:36-49. [PMID: 36642283 DOI: 10.1016/j.ejpb.2023.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
In situ gelling formulations are drug delivery systems which typically exist in a liquid form at room temperature and change into gel state after application to the body in response to various stimuli such as changes in temperature, pH and ionic composition. Their biomedical application can further be improved by incorporating drug nanoparticles into in situ gelling systems in order to prolong drug release, reduce dosing frequency and improve therapeutic outcomes of patients, developing highly functional but challenging dosage forms. The composition of in situ gelling formulations influence factors relating to performance such as their syringeability, rheology, drug release profile and drug bioavailability at target sites, amongst other factors. The inclusion of mucoadhesive polymeric constituents into in situ gelling formulations has also been explored to ensure that the therapeutic agents are retained at target site for extended period of time. This review article will discuss traditional techniques (water bath-based vial inversion and viscometry) as well as advanced methodology (rheometry, differential scanning calorimetry, Small Angle Neutron Scattering, Small Angle X-ray Scattering, etc.) for evaluating in situ gel forming systems for topical drug delivery. The clinical properties of in situ gelling systems that have been studied for potential biomedical applications over the last ten years will be reviewed to highlight current knowledge in the performance of these systems. Formulation issues that have slowed the translation of some promising drug formulations from the research laboratory to the clinic will also be detailed.
Collapse
|