1
|
Mirza R, Shah KU, Khan AU, Fawad M, Rehman AU, Ahmed N, Nawaz A, Shah SU, Alasmari AF, Alharbi M, Alasmari F, Hafeez Z, Haq SU. Statistical design and optimization of nano-transfersomes based chitosan gel for transdermal delivery of cefepime. Drug Dev Ind Pharm 2024; 50:511-523. [PMID: 38718267 DOI: 10.1080/03639045.2024.2353098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES This research aimed to overcome challenges posed by cefepime excessive elimination rate and poor patient compliance by developing transdermal delivery system using nano-transfersomes based chitosan gel. METHODS Rotary evaporation-sonication method and the Box-Behnken model were used to prepare cefepime loaded nano-transfersomes (CPE-NTFs). The physiochemical characterization of CPE-NTFs were analyzed including DLS, deformability index, DSC and antimicrobial study. Optimized CPE-NTFs loaded into chitosan gel and appropriately characterized. In vitro release, ex vivo and in vivo studies were performed. RESULTS The CPE-NTFs were physically stable with particle size 222.6 ± 1.8 nm, polydispersity index 0.163 ± 0.02, zeta potential -20.8 ± 0.1 mv, entrapment efficiency 81.4 ± 1.1% and deformability index 71 ± 0.2. DSC analysis confirmed successful drug loading and thermal stability. FTIR analysis showed no chemical interaction among the excipients of CPE-NTFs gel. The antibacterial activity demonstrated a remarkable reduction in the minimum inhibitory concentration of cefepime when incorporated into nano-transfersomes. CPE-NTFs based chitosan gel (CPE-NTFs gel) showed significant physicochemical properties. In vitro release studies exhibited sustained release behavior over 24 h, and ex vivo studies indicated enhanced permeation and retention compared to conventional cefepime gel. In vivo skin irritation studies confirmed CPE-NTFs gel was nonirritating and biocompatible for transdermal delivery. CONCLUSION This research showed nano-transfersomes based chitosan gel is a promising approach for cefepime transdermal delivery and provides sustained release of cefepime.
Collapse
Affiliation(s)
- Rashna Mirza
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Atif Ullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mohsin Fawad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Sami Ul Haq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| |
Collapse
|
2
|
Bodnár K, Fehér P, Ujhelyi Z, Bácskay I, Józsa L. Recent Approaches for the Topical Treatment of Psoriasis Using Nanoparticles. Pharmaceutics 2024; 16:449. [PMID: 38675110 PMCID: PMC11054466 DOI: 10.3390/pharmaceutics16040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Psoriasis (PSO) is a chronic autoimmune skin condition characterized by the rapid and excessive growth of skin cells, which leads to the formation of thick, red, and scaly patches on the surface of the skin. These patches can be itchy and painful, and they may cause discomfort for patients affected by this condition. Therapies for psoriasis aim to alleviate symptoms, reduce inflammation, and slow down the excessive skin cell growth. Conventional topical treatment options are non-specific, have low efficacy and are associated with adverse effects, which is why researchers are investigating different delivery mechanisms. A novel approach to drug delivery using nanoparticles (NPs) shows promise in reducing toxicity and improving therapeutic efficacy. The unique properties of NPs, such as their small size and large surface area, make them attractive for targeted drug delivery, enhanced drug stability, and controlled release. In the context of PSO, NPs can be designed to deliver active ingredients with anti-inflammatory effect, immunosuppressants, or other therapeutic compounds directly to affected skin areas. These novel formulations offer improved access to the epidermis and facilitate better absorption, thus enhancing the therapeutic efficacy of conventional anti-psoriatic drugs. NPs increase the surface-to-volume ratio, resulting in enhanced penetration through the skin, including intracellular, intercellular, and trans-appendage routes. The present review aims to discuss the latest approaches for the topical therapy of PSO using NPs. It is intended to summarize the results of the in vitro and in vivo examinations carried out in the last few years regarding the effectiveness and safety of nanoparticles.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Biswasroy P, Pradhan D, Pradhan DK, Ghosh G, Rath G. Development of Betulin-Loaded Nanostructured Lipid Carriers for the Management of Imiquimod-Induced Psoriasis. AAPS PharmSciTech 2024; 25:57. [PMID: 38472545 DOI: 10.1208/s12249-024-02774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a complex and persistent autoimmune skin disease. The present research focused on the therapeutic evaluation of betulin-loaded nanostructured lipid carriers (BE-NLCs) towards managing psoriasis. The BE-NLCs were synthesized using the emulsification cum solidification method, exhibiting a spherical shape with a particle size of 183.5±1.82nm and a narrow size distribution window (PDI: 0.142±0.05). A high zeta potential -38.64±0.05mV signifies the relative stability of the nano-dispersion system. BE-NLCs show a drug loading and entrapment efficiency of 47.35±3.25% and 87.8±7.86%, respectively. In vitro release study, BE NLCs show a cumulative percentage release of 90.667±5.507% over BE-sol (57.334±5.03%) and BD-oint (42±4.58%) for 720min. In an ex vivo 24-h permeation study, % cumulative amount permeated per cm2 was found to be 55.667±3.33% from BE-NLCs and 32.012±3.26% from BE-sol, demonstrating a better permeability of 21.66% when compared to the standard formulation BD-oint. The in vivo anti-psoriatic activity in the IMQ-induced model shows topical application of BE-sol, BE-NLCs, and BD-oint resulted in recovery rates of 56%, 82%, and 65%, respectively, based on PASI (Psoriasis Area and Severity Index) score. Notably, BE-NLCs demonstrated a more significant reduction in spleen mass, indicating attenuation of the local innate immune system in psoriatic mice. Reductions in TNF-α, IL-6, and IL-17 levels were observed in both BE-sol and BE-NLCs groups compared to the disease control (DC) group, with BE-NLCs exhibiting superior outcomes (74.05%, 44.76%, and 49.26% reduction, respectively). Soy lecithin and squalene-based NLCs could be better carrier system for the improvement of the therapeutic potential of BE towards management of psoriasis.
Collapse
Affiliation(s)
- Prativa Biswasroy
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India
| | - Dilip Kumar Pradhan
- Department of Medicine, Pandit Raghunath Murmu Medical College, and Hospital, Baripada, Odisha, India
| | - Goutam Ghosh
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| | - Goutam Rath
- Department of Herbal Nanotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), 751003, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Arpa MD, Kesmen EE, Biltekin SN. Novel Sprayable Thermosensitive Benzydamine Hydrogels for Topical Application: Development, Characterization, and In Vitro Biological Activities. AAPS PharmSciTech 2023; 24:214. [PMID: 37848623 DOI: 10.1208/s12249-023-02674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Benzydamine hydrochloride (BZD) having analgesic, anesthetic, and anti-inflammatory effects is used orally or topically in the treatment of disorders such as joint inflammation and muscle pain. Within the scope of this study, sprayable thermosensitive BZD hydrogels were developed using thermoresponsive poloxamers to avoid systemic side effects and to provide better compliance for topical administration. Also, hydroxypropyl methyl cellulose (HPMC) was employed to improve the mechanical strength and bioadhesive properties of the hydrogel. The addition of BZD generally decreased the viscosity of the formulations (p < 0.05), while increasing the gelation temperature (p < 0.05). The formulations that did not have any clogs or leaks in the nozzle of the bottle during the spraying process were considered lead formulations. To spray the formulations easily, it was found that the viscosity at RT should be less than 200 mPa·s, and their gelation temperature should be between 26 and 34°C. Increasing HPMC and poloxamer improved bioadhesion. The amount of HPMC and poloxamers did not cause a significant change in the release characteristics of the formulations (p > 0.05); the release profiles of BZD from the formulations were similar according to model-independent kinetic (f2 > 50). HPMC and poloxamers had important roles in the accumulation of BZD in the skin. In vitro biological activity studies demonstrated that the formulations presented their anti-inflammatory activity with TNF-α inhibition but did not have any effect on the inhibition of COX enzymes as expected. As a result, thermosensitive hydrogels containing BZD might be an appropriate alternative, providing an advantage in terms of easier application compared to conventional gels.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey.
| | - Ebrar Elif Kesmen
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey
| | - Sevde Nur Biltekin
- Department of Microbiology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduated Studies in Science, Istanbul University, 34116, Istanbul, Turkey
| |
Collapse
|