1
|
Hutomo DI, Deandra FA, Ketherin K, García-Gareta E, Bachtiar EW, Amir L, Tadjoedin FM, Widaryono A, Haerani N, Lessang R, Soeroso Y. The Effect of Carbodiimide Crosslinkers on Gelatin Hydrogel as a Potential Biomaterial for Gingival Tissue Regeneration. Gels 2024; 10:674. [PMID: 39590030 PMCID: PMC11593530 DOI: 10.3390/gels10110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Connective tissue grafts for gingival recession treatment present significant challenges as they require an additional surgical site, leading to increased morbidity, extended operative times, and a more painful postoperative recovery for patients. Gelatin contains the arginine-glycine-aspartic acid (RGD) sequence, which supports cell adhesion and interactions. The development of gelatin hydrogels holds significant promise due to their biocompatibility, ease of customization, and structural resemblance to the extracellular matrix, making them a potential candidate for gingival regeneration. This study aimed to assess the physical and biological properties of crosslinked gelatin hydrogels using EDC/NHS with two crosslinker concentrations (GelCL12 and GelCL24) and compare these to non-crosslinked gelatin. Both groups underwent morphological, rheological, and chemical analysis. Biological assessments were conducted to evaluate human gingival fibroblast (HGF) proliferation, migration, and COL1 expression in response to the scaffolds. The crosslinked gelatin group exhibited greater interconnectivity and better physical characteristics without displaying cytotoxic effects on the cells. FTIR analysis revealed no significant chemical differences between the groups. Notably, the GelCL12 group significantly enhanced HGF migration and upregulated COL1 expression. Overall, GelCL12 met the required physical characteristics and biocompatibility, making it a promising scaffold for future gingival tissue regeneration applications.
Collapse
Affiliation(s)
- Dimas Ilham Hutomo
- Doctoral Program, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia;
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Fathia Agzarine Deandra
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Ketherin Ketherin
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Aragon Institute of Health Research (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain;
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6DE, UK
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Lisa Amir
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Fatimah Maria Tadjoedin
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Adityo Widaryono
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Natalina Haerani
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Robert Lessang
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| |
Collapse
|
2
|
Hwang HS, Lee CS. Nanoclay-Composite Hydrogels for Bone Tissue Engineering. Gels 2024; 10:513. [PMID: 39195042 DOI: 10.3390/gels10080513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Nanoclay-composite hydrogels represent a promising avenue for advancing bone tissue engineering. Traditional hydrogels face challenges in providing mechanical strength, biocompatibility, and bioactivity necessary for successful bone regeneration. The incorporation of nanoclay into hydrogel matrices offers a potential unique solution to these challenges. This review provides a comprehensive overview of the fabrication, physico-chemical/biological performance, and applications of nanoclay-composite hydrogels in bone tissue engineering. Various fabrication techniques, including in situ polymerization, physical blending, and 3D printing, are discussed. In vitro and in vivo studies evaluating biocompatibility and bioactivity have demonstrated the potential of these hydrogels for promoting cell adhesion, proliferation, and differentiation. Their applications in bone defect repair, osteochondral tissue engineering and drug delivery are also explored. Despite their potential in bone tissue engineering, nanoclay-composite hydrogels face challenges such as optimal dispersion, scalability, biocompatibility, long-term stability, regulatory approval, and integration with emerging technologies to achieve clinical application. Future research directions need to focus on refining fabrication techniques, enhancing understanding of biological interactions, and advancing towards clinical translation and commercialization. Overall, nanoclay-composite hydrogels offer exciting opportunities for improving bone regeneration strategies.
Collapse
Affiliation(s)
- Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
3
|
Kessler F, Arnke K, Eggerschwiler B, Neldner Y, Märsmann S, Gröninger O, Casanova EA, Weber FA, König MA, Stark WJ, Pape HC, Cinelli P, Tiziani S. Murine iPSC-Loaded Scaffold Grafts Improve Bone Regeneration in Critical-Size Bone Defects. Int J Mol Sci 2024; 25:5555. [PMID: 38791592 PMCID: PMC11121928 DOI: 10.3390/ijms25105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
In certain situations, bones do not heal completely after fracturing. One of these situations is a critical-size bone defect where the bone cannot heal spontaneously. In such a case, complex fracture treatment over a long period of time is required, which carries a relevant risk of complications. The common methods used, such as autologous and allogeneic grafts, do not always lead to successful treatment results. Current approaches to increasing bone formation to bridge the gap include the application of stem cells on the fracture side. While most studies investigated the use of mesenchymal stromal cells, less evidence exists about induced pluripotent stem cells (iPSC). In this study, we investigated the potential of mouse iPSC-loaded scaffolds and decellularized scaffolds containing extracellular matrix from iPSCs for treating critical-size bone defects in a mouse model. In vitro differentiation followed by Alizarin Red staining and quantitative reverse transcription polymerase chain reaction confirmed the osteogenic differentiation potential of the iPSCs lines. Subsequently, an in vivo trial using a mouse model (n = 12) for critical-size bone defect was conducted, in which a PLGA/aCaP osteoconductive scaffold was transplanted into the bone defect for 9 weeks. Three groups (each n = 4) were defined as (1) osteoconductive scaffold only (control), (2) iPSC-derived extracellular matrix seeded on a scaffold and (3) iPSC seeded on a scaffold. Micro-CT and histological analysis show that iPSCs grafted onto an osteoconductive scaffold followed by induction of osteogenic differentiation resulted in significantly higher bone volume 9 weeks after implantation than an osteoconductive scaffold alone. Transplantation of iPSC-seeded PLGA/aCaP scaffolds may improve bone regeneration in critical-size bone defects in mice.
Collapse
Affiliation(s)
- Franziska Kessler
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Kevin Arnke
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Benjamin Eggerschwiler
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Yvonne Neldner
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Sonja Märsmann
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Elisa A. Casanova
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Fabienne A. Weber
- Institute of Laboratory Animal Science, University of Zurich, 8091 Zurich, Switzerland
| | | | - Wendelin J. Stark
- Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Hans-Christoph Pape
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| | - Paolo Cinelli
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
- Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, 8057 Zurich, Switzerland
| | - Simon Tiziani
- Department of Trauma Surgery, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland (E.A.C.); (P.C.)
| |
Collapse
|
4
|
Zhang Y, Pham HM, Tran SD. The Chicken Egg: An Advanced Material for Tissue Engineering. Biomolecules 2024; 14:439. [PMID: 38672456 PMCID: PMC11048217 DOI: 10.3390/biom14040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
The chicken egg, an excellent natural source of proteins, has been an overlooked native biomaterial with remarkable physicochemical, structural, and biological properties. Recently, with significant advances in biomedical engineering, particularly in the development of 3D in vitro platforms, chicken egg materials have increasingly been investigated as biomaterials due to their distinct advantages such as their low cost, availability, easy handling, gelling ability, bioactivity, and provision of a developmentally stimulating environment for cells. In addition, the chicken egg and its by-products can improve tissue engraftment and stimulate angiogenesis, making it particularly attractive for wound healing and tissue engineering applications. Evidence suggests that the egg white (EW), egg yolk (EY), and eggshell membrane (ESM) are great biomaterial candidates for tissue engineering, as their protein composition resembles mammalian extracellular matrix proteins, ideal for cellular attachment, cellular differentiation, proliferation, and survivability. Moreover, eggshell (ES) is considered an excellent calcium resource for generating hydroxyapatite (HA), making it a promising biomaterial for bone regeneration. This review will provide researchers with a concise yet comprehensive understanding of the chicken egg structure, composition, and associated bioactive molecules in each component and introduce up-to-date tissue engineering applications of chicken eggs as biomaterials.
Collapse
Affiliation(s)
- Yuli Zhang
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.)
| | - Hieu M. Pham
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.)
- Department of Periodontology, Eastman Institute for Oral Health, University of Rochester Medical Center, 625 Elmwood Avenue, Rochester, NY 14620, USA
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.)
| |
Collapse
|
5
|
Mao Y, Sun Y, Yang C. Compound Microalgae-Type Biofunctional Hydrogel for Wound Repair during Full-Thickness Skin Injuries. Polymers (Basel) 2024; 16:692. [PMID: 38475375 DOI: 10.3390/polym16050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
A dual biofunctional hydrogel (HQCS-SP) wound dressing, offering antibacterial properties and a biological response, was innovatively designed and developed to repair full-layer skin defects. The HQCS-SP hydrogel creates an artificial matrix that facilitates cell recruitment, extracellular matrix deposition, exhibiting exceptional tissue affinity, robust self-healing, effective hemostatic capabilities and accelerates wound healing. It is synthesized by crosslinking modified chitosan (HQCS) with spirulina protein (SP) and Fe3+. The HQCS provides antibacterial, antioxidant, good tissue affinity and excellent hemostasis performance. The incorporation of SP not only reinforces the antioxidant, antibacterial, anti-inflammatory, and pro-angiogenesis effects but also participates in the regulation of signal pathways and promotes wound healing. Therefore, this study offers a new visual angle for the design of advanced functional trauma dressings with great application potential in the bio-medical field.
Collapse
Affiliation(s)
- Yi Mao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yajuan Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Liang R, Zhang D, Guo J, Bian S, Yang C, A L, Zhang W, Huang F. Dielectric Barrier Discharge Plasma-Assisted Preparation of Chitosan-Based Hydrogels. Int J Mol Sci 2024; 25:2418. [PMID: 38397095 PMCID: PMC10889588 DOI: 10.3390/ijms25042418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Chitosan is widely used in the production of various hydrogels due to its non-biological toxicity, good biocompatibility, and strong biodegradability. However, chitosan-based hydrogels have not been widely used in tissue engineering due to their poor mechanical strength, poor stability and high biotoxicity of cross-linking agents. As a green technology, low temperature plasma is rich in active groups that can be involved in various chemical reactions, such as replacing the components on the chitosan chain, contributing to the cross-linking of chitosan. In this study, a plasma-assisted preparation method of chitosan-based hydrogels was developed and the properties, including mechanics, water absorption, and degradation (or stability), were characterized and analyzed. It is proved that plasma treatment plays a significant role in improving the mechanical strength and stability of hydrogels.
Collapse
Affiliation(s)
- Runing Liang
- College of Science, China Agricultural University, Beijing 100083, China; (R.L.); (D.Z.); (J.G.); (C.Y.); (W.Z.)
| | - Dan Zhang
- College of Science, China Agricultural University, Beijing 100083, China; (R.L.); (D.Z.); (J.G.); (C.Y.); (W.Z.)
| | - Junwei Guo
- College of Science, China Agricultural University, Beijing 100083, China; (R.L.); (D.Z.); (J.G.); (C.Y.); (W.Z.)
| | - Shaohuang Bian
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (S.B.); (L.A.)
| | - Cheng Yang
- College of Science, China Agricultural University, Beijing 100083, China; (R.L.); (D.Z.); (J.G.); (C.Y.); (W.Z.)
| | - Lusi A
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (S.B.); (L.A.)
| | - Weiwei Zhang
- College of Science, China Agricultural University, Beijing 100083, China; (R.L.); (D.Z.); (J.G.); (C.Y.); (W.Z.)
| | - Feng Huang
- College of Science, China Agricultural University, Beijing 100083, China; (R.L.); (D.Z.); (J.G.); (C.Y.); (W.Z.)
| |
Collapse
|
7
|
Michalicha A, Belcarz A, Giannakoudakis DA, Staniszewska M, Barczak M. Designing Composite Stimuli-Responsive Hydrogels for Wound Healing Applications: The State-of-the-Art and Recent Discoveries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:278. [PMID: 38255446 PMCID: PMC10817689 DOI: 10.3390/ma17020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Effective wound treatment has become one of the most important challenges for healthcare as it continues to be one of the leading causes of death worldwide. Therefore, wound care technologies significantly evolved in order to provide a holistic approach based on various designs of functional wound dressings. Among them, hydrogels have been widely used for wound treatment due to their biocompatibility and similarity to the extracellular matrix. The hydrogel formula offers the control of an optimal wound moisture level due to its ability to absorb excess fluid from the wound or release moisture as needed. Additionally, hydrogels can be successfully integrated with a plethora of biologically active components (e.g., nanoparticles, pharmaceuticals, natural extracts, peptides), thus enhancing the performance of resulting composite hydrogels in wound healing applications. In this review, the-state-of-the-art discoveries related to stimuli-responsive hydrogel-based dressings have been summarized, taking into account their antimicrobial, anti-inflammatory, antioxidant, and hemostatic properties, as well as other effects (e.g., re-epithelialization, vascularization, and restoration of the tissue) resulting from their use.
Collapse
Affiliation(s)
- Anna Michalicha
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Magdalena Staniszewska
- Institute of Health Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland
| |
Collapse
|
8
|
Guerra M, Garrudo FFF, Faustino C, Rosa ME, Ribeiro MHL. Exploring Functionalized Magnetic Hydrogel Polyvinyl Alcohol and Chitosan Electrospun Nanofibers. Gels 2023; 9:968. [PMID: 38131954 PMCID: PMC10743178 DOI: 10.3390/gels9120968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Nanofibrous materials present interesting characteristics, such as higher area/mass ratio and reactivity. These properties have been exploited in different applications, such as drug-controlled release and site-specific targeting of biomolecules for several disease treatments, including cancer. The main goal of this study was to develop magnetized nanofiber systems of lysozyme (Lys) for biological applications. The system envisaged electrospun polyvinyl alcohol (PVA) and PVA/chitosan (CS) nanofibers, loaded with Lys, crosslinked with boronic acids [phenylboronic acid (PBA), including 2-acetylphenylboronic acid (aPBA), 2-formylphenylboronic (fPBA), or bortezomib (BTZ)] and functionalized with magnetic nanobeads (IONPs), which was successfully built and tested using a microscale approach. Evaluation of the morphology of nanofibers, obtained by electrospinning, was carried out using SEM. The biological activities of the Lys-loaded PVA/CS (90:10 and 70:30) nanofibers were evaluated using the Micrococcus lysodeikticus method. To evaluate the success of the encapsulation process, the ratio of adsorbed Lys on the nanofibers, Lys activity, and in vitro Lys release were determined in buffer solution at pH values mimicking the environment of cancer cells. The viability of Caco-2 cancer cells was evaluated after being in contact with electrospun PVA + Lys and PVA/CS + Lys nanofibers, with or without boronic acid functionalation, and all were magnetized with IONPs.
Collapse
Affiliation(s)
- Mónica Guerra
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.G.); (C.F.)
| | - Fábio F. F. Garrudo
- Department of Bioengineering, Institute of Telecomunications, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Célia Faustino
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.G.); (C.F.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Emilia Rosa
- Instituto de Engenharia Mecânica (IDMEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Maria H. L. Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.G.); (C.F.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
9
|
Rusu MM, Fort CI, Vulpoi A, Barbu-Tudoran L, Baia M, Cotet LC, Baia L. Ultrasensitive Electroanalytical Detection of Pb 2+ and H 2O 2 Using Bi and Fe-Based Nanoparticles Embedded into Porous Carbon Xerogel-The Influence of Nanocomposite Pyrolysis Temperatures. Gels 2023; 9:868. [PMID: 37998958 PMCID: PMC10670808 DOI: 10.3390/gels9110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Multifunctional materials based on carbon xerogel (CX) with embedded bismuth (Bi) and iron (Fe) nanoparticles are tested for ultrasensitive amperometric detection of lead cation (Pb2+) and hydrogen peroxide (H2O2). The prepared CXBiFe-T nanocomposites were annealed at different pyrolysis temperatures (T, between 600 and 1050 °C) and characterized by X-ray diffraction (XRD), Raman spectroscopy, N2 adsorption, dynamic light scattering (DLS), and electron microscopies (SEM/EDX and TEM). Electrochemical impedance spectroscopy (EIS) and square wave anodic stripping voltammetry (SWV) performed at glassy carbon (GC) electrodes modified with chitosan (Chi)-CXBiFe-T evidenced that GC/Chi-CXBiFe-1050 electrodes exhibit excellent analytical behavior for Pb2+ and H2O2 amperometric detection: high sensitivity for Pb2+ (9.2·105 µA/µM) and outstanding limits of detection (97 fM, signal-to-noise ratio 3) for Pb2+, and remarkable for H2O2 (2.51 µM). The notable improvements were found to be favored by the increase in pyrolysis temperature. Multi-scale parameters such as (i) graphitization, densification of carbon support, and oxide nanoparticle reduction and purification were considered key aspects in the correlation between material properties and electrochemical response, followed by other effects such as (ii) average nanoparticle and Voronoi domain dimensions and (iii) average CXBiFe-T aggregate dimension.
Collapse
Affiliation(s)
- Mihai M. Rusu
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
| | - Carmen I. Fort
- Laboratory of Advanced Materials and Applied Technologies, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele 30, 400294 Cluj-Napoca, Romania; (M.B.); (L.C.C.)
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai” University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute of Interdisciplinary Research in Bio-Nano-Sciences, “Babes-Bolyai” University, T. Laurean 42, 400271 Cluj-Napoca, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology and Geology, “Babes-Bolyai” University, Clinicilor Str. 5–7, 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Monica Baia
- Laboratory of Advanced Materials and Applied Technologies, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele 30, 400294 Cluj-Napoca, Romania; (M.B.); (L.C.C.)
- Department of Biomolecular Physics, Faculty of Physics, “Babes-Bolyai” University, M. Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Liviu C. Cotet
- Laboratory of Advanced Materials and Applied Technologies, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele 30, 400294 Cluj-Napoca, Romania; (M.B.); (L.C.C.)
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai” University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Lucian Baia
- Laboratory of Advanced Materials and Applied Technologies, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele 30, 400294 Cluj-Napoca, Romania; (M.B.); (L.C.C.)
- Nanostructured Materials and Bio-Nano-Interfaces Center, Institute of Interdisciplinary Research in Bio-Nano-Sciences, “Babes-Bolyai” University, T. Laurean 42, 400271 Cluj-Napoca, Romania;
- Department of Condensed Matter Physics and Advanced Technologies, Faculty of Physics, “Babes-Bolyai” University, M. Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Zhang S, Yu M, Zhang G, He G, Ji Y, Dong J, Zheng H, Qian L. Revealing the Control Mechanisms of pH on the Solution Properties of Chitin via Single-Molecule Studies. Molecules 2023; 28:6769. [PMID: 37836611 PMCID: PMC10574145 DOI: 10.3390/molecules28196769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Chitin is one of the most common polysaccharides and is abundant in the cell walls of fungi and the shells of insects and aquatic organisms as a skeleton. The mechanism of how chitin responds to pH is essential to the precise control of brewing and the design of smart chitin materials. However, this molecular mechanism remains a mystery. Results from single-molecule studies, including single-molecule force spectroscopy (SMFS), AFM imaging, and molecular dynamic (MD) simulations, have shown that the mechanical and conformational behaviors of chitin molecules show surprising pH responsiveness. This can be compared with how, in natural aqueous solutions, chitin tends to form a more relaxed spreading conformation and show considerable elasticity under low stretching forces in acidic conditions. However, its molecular chain collapses into a rigid globule in alkaline solutions. The results show that the chain state of chitin can be regulated by the proportions of inter- and intramolecular H-bonds, which are determined via the number of water bridges on the chain under different pH values. This basic study may be helpful for understanding the cellular activities of fungi under pH stress and the design of chitin-based drug carriers.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Guanmei He
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Yunxu Ji
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Juan Dong
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
11
|
Wang H, Yin R, Chen X, Wu T, Bu Y, Yan H, Lin Q. Construction and Evaluation of Alginate Dialdehyde Grafted RGD Derivatives/Polyvinyl Alcohol/Cellulose Nanocrystals IPN Composite Hydrogels. Molecules 2023; 28:6692. [PMID: 37764467 PMCID: PMC10534451 DOI: 10.3390/molecules28186692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
To enhance the mechanical strength and cell adhesion of alginate hydrogel, making it satisfy the requirements of an ideal tissue engineering scaffold, the grafting of Arg-Gly-Asp (RGD) polypeptide sequence onto the alginate molecular chain was conducted by oxidation of sodium periodate and subsequent reduction amination of 2-methylpyridine borane complex (2-PBC) to synthesize alginate dialdehyde grafted RGD derivatives (ADA-RGD) with good cellular affinity. The interpenetrating network (IPN) composite hydrogels of alginate/polyvinyl alcohol/cellulose nanocrystals (ALG/PVA/CNCs) were fabricated through a physical mixture of ion cross-linking of sodium alginate (SA) with hydroxyapatite/D-glucono-δ-lactone (HAP/GDL), and physical cross-linking of polyvinyl alcohol (PVA) by a freezing/thawing method, using cellulose nanocrystals (CNCs) as the reinforcement agent. The effects of the addition of CNCs and different contents of PVA on the morphology, thermal stability, mechanical properties, swelling, biodegradability, and cell compatibility of the IPN composite hydrogels were investigated, and the effect of RGD grafting on the biological properties of the IPN composite hydrogels was also studied. The resultant IPN ALG/PVA/CNCs composite hydrogels exhibited good pore structure and regular 3D morphology, whose pore size and porosity could be regulated by adjusting PVA content and the addition of CNCs. By increasing the PVA content, the number of physical cross-linking points in PVA increased, resulting in greater stress support for the IPN composite hydrogels of ALG/PVA/CNCs and consequently improving their mechanical characteristics. The creation of the IPN ALG/PVA/CNCs composite hydrogels' physical cross-linking network through intramolecular or intermolecular hydrogen bonding led to improved thermal resistance and reduced swelling and biodegradation rate. Conversely, the ADA-RGD/PVA/CNCs IPN composite hydrogels exhibited a quicker degradation rate, attributed to the elimination of ADA-RGD by alkali. The results of the in vitro cytocompatibility showed that ALG/0.5PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels showed better proliferative activity in comparison with other composite hydrogels, while ALG/PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels displayed obvious proliferation effects, indicating that PVA, CNCs, and ADA-RGD with good biocompatibility were conducive to cell proliferation and differentiation for the IPN composite hydrogels.
Collapse
Affiliation(s)
- Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ruhong Yin
- Hainan Hongta Cigarette Co., Ltd., Haikou 571100, China;
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ting Wu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanan Bu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
12
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
13
|
Pele KG, Amaveda H, Mora M, Marcuello C, Lostao A, Alamán-Díez P, Pérez-Huertas S, Ángeles Pérez M, García-Aznar JM, García-Gareta E. Hydrocolloids of Egg White and Gelatin as a Platform for Hydrogel-Based Tissue Engineering. Gels 2023; 9:505. [PMID: 37367175 DOI: 10.3390/gels9060505] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Innovative materials are needed to produce scaffolds for various tissue engineering and regenerative medicine (TERM) applications, including tissue models. Materials derived from natural sources that offer low production costs, easy availability, and high bioactivity are highly preferred. Chicken egg white (EW) is an overlooked protein-based material. Whilst its combination with the biopolymer gelatin has been investigated in the food technology industry, mixed hydrocolloids of EW and gelatin have not been reported in TERM. This paper investigates these hydrocolloids as a suitable platform for hydrogel-based tissue engineering, including 2D coating films, miniaturized 3D hydrogels in microfluidic devices, and 3D hydrogel scaffolds. Rheological assessment of the hydrocolloid solutions suggested that temperature and EW concentration can be used to fine-tune the viscosity of the ensuing gels. Fabricated thin 2D hydrocolloid films presented globular nano-topography and in vitro cell work showed that the mixed hydrocolloids had increased cell growth compared with EW films. Results showed that hydrocolloids of EW and gelatin can be used for creating a 3D hydrogel environment for cell studies inside microfluidic devices. Finally, 3D hydrogel scaffolds were fabricated by sequential temperature-dependent gelation followed by chemical cross-linking of the polymeric network of the hydrogel for added mechanical strength and stability. These 3D hydrogel scaffolds displayed pores, lamellae, globular nano-topography, tunable mechanical properties, high affinity for water, and cell proliferation and penetration properties. In conclusion, the large range of properties and characteristics of these materials provide a strong potential for a large variety of TERM applications, including cancer models, organoid growth, compatibility with bioprinting, or implantable devices.
Collapse
Affiliation(s)
- Karinna Georgiana Pele
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Hippolyte Amaveda
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Mario Mora
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Fundación ARAID, 50018 Zaragoza, Aragon, Spain
| | - Pilar Alamán-Díez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Salvador Pérez-Huertas
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Andalusia, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
| | - Elena García-Gareta
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, 50009 Zaragoza, Aragon, Spain
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London NW3 2PF, UK
| |
Collapse
|