1
|
Lai X, Liu M, Liu Y, Zhu X, Wang J. OCRClassifier: integrating statistical control chart into machine learning framework for better detecting open chromatin regions. Front Genet 2024; 15:1400228. [PMID: 39698466 PMCID: PMC11652186 DOI: 10.3389/fgene.2024.1400228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 12/20/2024] Open
Abstract
Open chromatin regions (OCRs) play a crucial role in transcriptional regulation and gene expression. In recent years, there has been a growing interest in using plasma cell-free DNA (cfDNA) sequencing data to detect OCRs. By analyzing the characteristics of cfDNA fragments and their sequencing coverage, researchers can differentiate OCRs from non-OCRs. However, the presence of noise and variability in cfDNA-seq data poses challenges for the training data used in the noise-tolerance learning-based OCR estimation approach, as it contains numerous noisy labels that may impact the accuracy of the results. For current methods of detecting OCRs, they rely on statistical features derived from typical open and closed chromatin regions to determine whether a region is OCR or non-OCR. However, there are some atypical regions that exhibit statistical features that fall between the two categories, making it difficult to classify them definitively as either open or closed chromatin regions (CCRs). These regions should be considered as partially open chromatin regions (pOCRs). In this paper, we present OCRClassifier, a novel framework that combines control charts and machine learning to address the impact of high-proportion noisy labels in the training set and classify the chromatin open states into three classes accurately. Our method comprises two control charts. We first design a robust Hotelling T2 control chart and create new run rules to accurately identify reliable OCRs and CCRs within the initial training set. Then, we exclusively utilize the pure training set consisting of OCRs and CCRs to create and train a sensitized T2 control chart. This sensitized T2 control chart is specifically designed to accurately differentiate between the three categories of chromatin states: open, partially open, and closed. Experimental results demonstrate that under this framework, the model exhibits not only excellent performance in terms of three-class classification, but also higher accuracy and sensitivity in binary classification compared to the state-of-the-art models currently available.
Collapse
Affiliation(s)
- Xin Lai
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Min Liu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yuqian Liu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Zhu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jiayin Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Ju J, Zhao X, An Y, Yang M, Zhang Z, Liu X, Hu D, Wang W, Pan Y, Xia Z, Fan F, Shen X, Sun K. Cell-free DNA end characteristics enable accurate and sensitive cancer diagnosis. CELL REPORTS METHODS 2024; 4:100877. [PMID: 39406232 PMCID: PMC11573786 DOI: 10.1016/j.crmeth.2024.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
The fragmentation patterns of cell-free DNA (cfDNA) in plasma can potentially be utilized as diagnostic biomarkers in liquid biopsy. However, our knowledge of this biological process and the information encoded in fragmentation patterns remains preliminary. Here, we investigated the cfDNA fragmentomic characteristics against nucleosome positioning patterns in hematopoietic cells. cfDNA molecules with ends located within nucleosomes were relatively shorter with altered end motif patterns, demonstrating the feasibility of enriching tumor-derived cfDNA in patients with cancer through the selection of molecules possessing such ends. We then developed three cfDNA fragmentomic metrics after end selection, which showed significant alterations in patients with cancer and enabled cancer diagnosis. By incorporating machine learning, we further built high-performance diagnostic models, which achieved an overall area under the curve of 0.95 and 85.1% sensitivity at 95% specificity. Hence, our investigations explored the end characteristics of cfDNA fragmentomics and their merits in building accurate and sensitive cancer diagnostic models.
Collapse
Affiliation(s)
- Jia Ju
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xin Zhao
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518100, China
| | - Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ziteng Zhang
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518100, China
| | - Xiaoyi Liu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Dingxue Hu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wanqiu Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuqi Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhaohua Xia
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518100, China
| | - Fei Fan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuetong Shen
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
3
|
Figueroa-Angulo EE, Puente-Rivera J, Perez-Navarro YF, Condado EM, Álvarez-Sánchez ME. Epigenetic alteration in cervical cancer induced by human papillomavirus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:25-66. [PMID: 39864896 DOI: 10.1016/bs.ircmb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.
Collapse
Affiliation(s)
- Elisa-Elvira Figueroa-Angulo
- Licenciatura en Ciencias Genómicas, Laboratorio de Patogénesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de la México, Ciudad de México, México
| | - Jonathan Puente-Rivera
- División de Investigación, Hospital Juárez De México, Ciudad de México, México; Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Yussel Fernando Perez-Navarro
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Edgar Mendieta Condado
- Laboratorio Estatal de Salud Pública, Secretaría de Salud de Jalisco, Guadalajara, Jalisco, México
| | - María-Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
| |
Collapse
|
4
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Zamuner FT, Ramos-López A, García-Negrón A, Purcell-Wiltz A, Cortés-Ortiz A, Cuevas AR, Gosala K, Winkler E, Sidransky D, Guerrero-Preston R. Evaluation of silica spin‑column and magnetic bead formats for rapid DNA methylation analysis in clinical and point‑of‑care settings. Biomed Rep 2024; 21:112. [PMID: 38912171 PMCID: PMC11190640 DOI: 10.3892/br.2024.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Late-stage cancers lack effective treatment, underscoring the need for early diagnosis to improve prognosis and decrease mortality rates. Molecular markers, such as DNA methylation, offer promise in early cancer detection. The present study compared commercial kits for analyzing DNA from cervical liquid cytology samples in cancer screening. Rapid bisulfite conversion kits using silica spin-columns and magnetic beads were assessed against standard DNA extraction and bisulfite conversion methods for profiling DNA methylation using quantitative methylation-specific PCR. β-actin amplification indicated the suitability of small sample volumes for methylation studies using either the pellet or supernatant (cell-free DNA) parts. Comparison of Bisulfite Conversion Kit-Whole Cell (Abcam), Methylamp Bisulfite Modification (Epigentek), EpiTect Fast LyseAll Bisulfite Kit (Qiagen GmbH) and EZ DNA Methylation-Direct Kit (Zymo Research Corp.) showed no significant differences in β-actin cycle threshold values. EZ-96 DNA Methylation-Lightning MagPrep (Zymo Research Corp.), a hybrid kit in a 96-well plate format, exhibited swift turnaround time and similar amplification efficiency. Automation with magnetic bead kits increased throughput without compromising amplification efficiency in open PCR systems. Cost analysis favored direct kits over the gold standard manual protocol. This comparison aids in selecting cost-effective DNA methylation diagnostic tests. The present study confirmed comparable kit performance in methylation-based analysis, highlighting the adequacy of cytology samples and the potential of bodily fluids as alternatives for liquid biopsy.
Collapse
Affiliation(s)
- Fernando T. Zamuner
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ashley Ramos-López
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
| | | | - Ana Purcell-Wiltz
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- Department of Medicine, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico
| | - Andrea Cortés-Ortiz
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- Department of Medicine, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico
| | - Aniris Román Cuevas
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- Department of Biology, University of Puerto Rico, Río Piedras 00931, Puerto Rico
| | - Keerthana Gosala
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eli Winkler
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- New York University Langone Health, New York, NY 10016, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- LifeGene-Biomarks, FastForward Innovation Hub, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Pastò B, Buzzatti G, Schettino C, Malapelle U, Bergamini A, De Angelis C, Musacchio L, Dieci MV, Kuhn E, Lambertini M, Passarelli A, Toss A, Farolfi A, Roncato R, Capoluongo E, Vida R, Pignata S, Callari M, Baldassarre G, Bartoletti M, Gerratana L, Puglisi F. Unlocking the potential of Molecular Tumor Boards: from cutting-edge data interpretation to innovative clinical pathways. Crit Rev Oncol Hematol 2024; 199:104379. [PMID: 38718940 DOI: 10.1016/j.critrevonc.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
The emerging era of precision medicine is characterized by an increasing availability of targeted anticancer therapies and by the parallel development of techniques to obtain more refined molecular data, whose interpretation may not always be straightforward. Molecular tumor boards gather various professional figures, in order to leverage the analysis of molecular data and provide prognostic and predictive insights for clinicians. In addition to healthcare development, they could also become a tool to promote knowledge and research spreading. A growing body of evidence on the application of molecular tumor boards to clinical practice is forming and positive signals are emerging, although a certain degree of heterogeneity exists. This work analyzes molecular tumor boards' potential workflows, figures involved, data sources, sample matrices and eligible patients, as well as available evidence and learning examples. The emerging concept of multi-institutional, disease-specific molecular tumor boards is also considered by presenting two ongoing nationwide experiences.
Collapse
Affiliation(s)
- Brenno Pastò
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Giulia Buzzatti
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy
| | - Clorinda Schettino
- Clinical Trials Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli 80131, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli 80131, Italy
| | - Alice Bergamini
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milano 20132, Italy; Unit of Obstetrics and Gynaecology, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy
| | - Carmine De Angelis
- Oncology Unit - Department of Clinical Medicine and Surgery, University of Naples Federico II, Napoli 80131, Italy
| | - Lucia Musacchio
- Department of Women and Child Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma 00168, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35122, Italy; Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova 35128, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milano 20122, Italy; Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova 16132, Italy
| | - Anna Passarelli
- Department of Urology and Gynaecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli 80131, Italy
| | - Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena 41124, Italy; Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena 41124, Italy
| | - Alberto Farolfi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola 47014, Italy
| | - Rossana Roncato
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano 33081, Italy
| | - Ettore Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Napoli 80131, Italy; Clinical Pathology Unit, Azienda Ospedaliera San Giovanni Addolorata, Roma 00184, Italy
| | - Riccardo Vida
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Sandro Pignata
- Department of Urology and Gynaecology, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli 80131, Italy
| | | | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano 33081, Italy
| | - Michele Bartoletti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| | - Lorenzo Gerratana
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy.
| | - Fabio Puglisi
- Department of Medicine (DMED), University of Udine, Udine 33100, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano 33081, Italy
| |
Collapse
|
7
|
Liu X, Yang M, Hu D, An Y, Wang W, Lin H, Pan Y, Ju J, Sun K. Systematic biases in reference-based plasma cell-free DNA fragmentomic profiling. CELL REPORTS METHODS 2024; 4:100793. [PMID: 38866008 PMCID: PMC11228372 DOI: 10.1016/j.crmeth.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
Plasma cell-free DNA (cfDNA) fragmentation patterns are emerging directions in cancer liquid biopsy with high translational significance. Conventionally, the cfDNA sequencing reads are aligned to a reference genome to extract their fragmentomic features. In this study, through cfDNA fragmentomics profiling using different reference genomes on the same datasets in parallel, we report systematic biases in such conventional reference-based approaches. The biases in cfDNA fragmentomic features vary among races in a sample-dependent manner and therefore might adversely affect the performances of cancer diagnosis assays across multiple clinical centers. In addition, to circumvent the analytical biases, we develop Freefly, a reference-free approach for cfDNA fragmentomics profiling. Freefly runs ∼60-fold faster than the conventional reference-based approach while generating highly consistent results. Moreover, cfDNA fragmentomic features reported by Freefly can be directly used for cancer diagnosis. Hence, Freefly possesses translational merit toward the rapid and unbiased measurement of cfDNA fragmentomics.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Chemical and Biological Engineering, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Dingxue Hu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wanqiu Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huizhen Lin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuqi Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia Ju
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
8
|
Peruhova M, Banova-Chakarova S, Miteva DG, Velikova T. Genetic screening of liver cancer: State of the art. World J Hepatol 2024; 16:716-730. [PMID: 38818292 PMCID: PMC11135278 DOI: 10.4254/wjh.v16.i5.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, remains a global health challenge with rising incidence and limited therapeutic options. Genetic factors play a pivotal role in the development and progression of liver cancer. This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer. We discuss the genetic underpinnings of liver cancer, emphasizing the critical role of risk-associated genetic variants, somatic mutations, and epigenetic alterations. We also explore the intricate interplay between environmental factors and genetics, highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy, and advancements in high-throughput sequencing technologies. By synthesizing the latest research findings, we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer, shedding light on their potential to revolutionize early detection, risk assessment, and targeted therapies in the fight against this devastating disease.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria
| | - Sonya Banova-Chakarova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria.
| | - Dimitrina Georgieva Miteva
- Department of Genetics, Faculty of Biology, Sofia University" St. Kliment Ohridski, Sofia 1164, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
9
|
Gattuso G, Lavoro A, Caltabiano R, Madonna G, Capone M, Ascierto PA, Falzone L, Libra M, Candido S. Methylation‑sensitive restriction enzyme‑droplet digital PCR assay for the one‑step highly sensitive analysis of DNA methylation hotspots. Int J Mol Med 2024; 53:42. [PMID: 38488030 PMCID: PMC10998716 DOI: 10.3892/ijmm.2024.5366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/23/2023] [Indexed: 03/19/2024] Open
Abstract
DNA methylation is an epigenetic modification that plays a key role in several cellular processes mediating the fine regulation of gene expression. Aberrant DNA methylation is observed in a wide range of pathologies, including cancer. Since these DNA modifications are transferred to the cell progenies and are stable over the time, the analysis of DNA methylation status has been proposed for diagnostic and prognostic purposes in cancer. Currently, DNA bisulfite conversion is the gold standard method for the high‑throughput analysis of DNA methylation alterations. However, bisulfite treatment induces DNA fragmentation affecting its quality for the downstream analyses. In this field, it is mandatory to identify novel methods to overcome the limits of conventional approaches. In the present study, the Methylation‑Sensitive Restriction Enzyme‑droplet digital PCR (MSRE‑ddPCR) assay was developed as a novel sensitive method for the analysis of DNA methylation of short genomic regions, combining the MSRE assay with the high‑sensitivity ddPCR and using an exogenous methylation sequence as control. Setup and validation experiments were performed analyzing a methylation hotspot of the Solute Carrier Family 22 Member 17 in DNA samples derived from melanoma cell lines as well as from tissues and serum samples obtained from patients with melanoma and healthy controls. Compared with the standard MSRE approaches, the MSRE‑ddPCR assay is more appropriate for the analysis of DNA methylation (methDNA) in samples with low amounts of DNA (up to 0.651 ng) showing a greater sensitivity. These findings suggested the potential clinical application of MSRE‑ddPCR paving the way to the analysis of other methDNA hotspots in different tumors.
Collapse
Affiliation(s)
- Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies 'G.F. Ingrassia', University of Catania, I‑95123 Catania, Italy
| | - Gabriele Madonna
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, I‑80131 Naples, Italy
| | - Mariaelena Capone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, I‑80131 Naples, Italy
| | - Paolo Antonio Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, I‑80131 Naples, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, I‑80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
10
|
Gao Y, Zhou N, Liu J. Ovarian Cancer Diagnosis and Prognosis Based on Cell-Free DNA Methylation. Cancer Control 2024; 31:10732748241255548. [PMID: 38764160 PMCID: PMC11104031 DOI: 10.1177/10732748241255548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Background: Ovarian cancer stands as the deadliest malignant tumor within the female reproductive tract. As a result of the absence of effective diagnostic and monitoring markers, 75% of ovarian cancer cases are diagnosed at a late stage, leading to a mere 50% survival rate within five years. The advancement of molecular biology is essential for accurate diagnosis and treatment of ovarian cancer. Methods: A review of several randomized clinical trials, focusing on the ovarian cancer, was undertaken. The advancement of molecular biology and diagnostic methods related to accurate diagnosis and treatment of ovarian cancer were examined. Results: Liquid biopsy is an innovative method of detecting malignant tumors that has gained increasing attention over the past few years. Cell-free DNA assay-based liquid biopsies show potential in delineating tumor status heterogeneity and tracking tumor recurrence. DNA methylation influences a multitude of biological functions and diseases, especially during the initial phases of cancer. The cell-free DNA methylation profiling system has emerged as a sensitive and non-invasive technique for identifying and detecting the biological origins of cancer. It holds promise as a biomarker, enabling early screening, recurrence monitoring, and prognostic evaluation of cancer. Conclusions: This review evaluates recent advancements and challenges associated with cell-free DNA methylation analysis for the diagnosis, prognosis monitoring, and assessment of therapeutic responses in the management of ovarian cancers, aiming to offer guidance for precise diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Gynecology and Obstetrics, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Nanyang Zhou
- Department of Traditional Chinese Medicine, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Jie Liu
- Department of Gynecology and Obstetrics, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
11
|
Herrgott GA, Snyder JM, She R, Malta TM, Sabedot TS, Lee IY, Pawloski J, Podolsky-Gondim GG, Asmaro KP, Zhang J, Cannella CE, Nelson K, Thomas B, deCarvalho AC, Hasselbach LA, Tundo KM, Newaz R, Transou A, Morosini N, Francisco V, Poisson LM, Chitale D, Mukherjee A, Mosella MS, Robin AM, Walbert T, Rosenblum M, Mikkelsen T, Kalkanis S, Tirapelli DPC, Weisenberger DJ, Carlotti CG, Rock J, Castro AV, Noushmehr H. Detection of diagnostic and prognostic methylation-based signatures in liquid biopsy specimens from patients with meningiomas. Nat Commun 2023; 14:5669. [PMID: 37704607 PMCID: PMC10499807 DOI: 10.1038/s41467-023-41434-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Recurrence of meningiomas is unpredictable by current invasive methods based on surgically removed specimens. Identification of patients likely to recur using noninvasive approaches could inform treatment strategy, whether intervention or monitoring. In this study, we analyze the DNA methylation levels in blood (serum and plasma) and tissue samples from 155 meningioma patients, compared to other central nervous system tumor and non-tumor entities. We discover DNA methylation markers unique to meningiomas and use artificial intelligence to create accurate and universal models for identifying and predicting meningioma recurrence, using either blood or tissue samples. Here we show that liquid biopsy is a potential noninvasive and reliable tool for diagnosing and predicting outcomes in meningioma patients. This approach can improve personalized management strategies for these patients.
Collapse
Affiliation(s)
- Grayson A Herrgott
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - James M Snyder
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Ruicong She
- Department of Public Health, Biostatistics, Henry Ford Health, Detroit, MI, USA
| | - Tathiane M Malta
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Thais S Sabedot
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Ian Y Lee
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Jacob Pawloski
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Guilherme G Podolsky-Gondim
- Department of Neurosurgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Karam P Asmaro
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Jiaqi Zhang
- Department of Public Health, Biostatistics, Henry Ford Health, Detroit, MI, USA
| | - Cara E Cannella
- Department of Public Health, Biostatistics, Henry Ford Health, Detroit, MI, USA
| | - Kevin Nelson
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Bartow Thomas
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Ana C deCarvalho
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Laura A Hasselbach
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Kelly M Tundo
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Rehnuma Newaz
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Andrea Transou
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Natalia Morosini
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Victor Francisco
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Laila M Poisson
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
- Department of Public Health, Biostatistics, Henry Ford Health, Detroit, MI, USA
| | | | - Abir Mukherjee
- Department of Pathology, Henry Ford Health, Detroit, MI, USA
| | - Maritza S Mosella
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Adam M Robin
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Tobias Walbert
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Mark Rosenblum
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Steven Kalkanis
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Daniela P C Tirapelli
- Department of Neurosurgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Carlos G Carlotti
- Department of Neurosurgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jack Rock
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA
| | - Ana Valeria Castro
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA.
- Department of Physiology, Michigan State University, E. Lansing, MI, USA.
| | - Houtan Noushmehr
- Department of Neurosurgery, Omics Laboratory, Hermelin Brain Tumor Center, Henry Ford Health, Detroit, MI, USA.
- Department of Physiology, Michigan State University, E. Lansing, MI, USA.
| |
Collapse
|
12
|
Chen Z, Li C, Zhou Y, Yao Y, Liu J, Wu M, Su J. Liquid biopsies for cancer: From bench to clinic. MedComm (Beijing) 2023; 4:e329. [PMID: 37492785 PMCID: PMC10363811 DOI: 10.1002/mco2.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor‑derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell-free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic-based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.
Collapse
Affiliation(s)
- Zhenhui Chen
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Chenghao Li
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yue Zhou
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Yinghao Yao
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Min Wu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Jianzhong Su
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
13
|
Cheishvili D, Wong C, Karim MM, Kibria MG, Jahan N, Das PC, Yousuf MAK, Islam MA, Das DC, Noor-E-Alam SM, Szyf M, Alam S, Khan WA, Al Mahtab M. A high-throughput test enables specific detection of hepatocellular carcinoma. Nat Commun 2023; 14:3306. [PMID: 37286539 DOI: 10.1038/s41467-023-39055-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
High-throughput tests for early cancer detection can revolutionize public health and reduce cancer morbidity and mortality. Here we show a DNA methylation signature for hepatocellular carcinoma (HCC) detection in liquid biopsies, distinct from normal tissues and blood profiles. We developed a classifier using four CpG sites, validated in TCGA HCC data. A single F12 gene CpG site effectively differentiates HCC samples from other blood samples, normal tissues, and non-HCC tumors in TCGA and GEO data repositories. The markers were validated in a separate plasma sample dataset from HCC patients and controls. We designed a high-throughput assay using next-generation sequencing and multiplexing techniques, analyzing plasma samples from 554 clinical study participants, including HCC patients, non-HCC cancers, chronic hepatitis B, and healthy controls. HCC detection sensitivity was 84.5% at 95% specificity and 0.94 AUC. Implementing this assay for high-risk individuals could significantly decrease HCC morbidity and mortality.
Collapse
Affiliation(s)
- David Cheishvili
- HKG Epitherapeutics Ltd. Unit 313-315, 3/F Biotech Center 2, 11 Science Park west Avenue, Shatin, Hong Kong, SAR, China.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada.
| | - Chifat Wong
- HKG Epitherapeutics Ltd. Unit 313-315, 3/F Biotech Center 2, 11 Science Park west Avenue, Shatin, Hong Kong, SAR, China
| | - Mohammad Mahbubul Karim
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Mohammad Golam Kibria
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Nusrat Jahan
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Pappu Chandra Das
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Md Abul Khair Yousuf
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Md Atikul Islam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Dulal Chandra Das
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | | | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Sarwar Alam
- Department of Clinical Oncology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Wasif A Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| |
Collapse
|
14
|
Bou Zerdan M, Kassab J, Saba L, Haroun E, Bou Zerdan M, Allam S, Nasr L, Macaron W, Mammadli M, Abou Moussa S, Chaulagain CP. Liquid biopsies and minimal residual disease in lymphoid malignancies. Front Oncol 2023; 13:1173701. [PMID: 37228488 PMCID: PMC10203459 DOI: 10.3389/fonc.2023.1173701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Minimal residual disease (MRD) assessment using peripheral blood instead of bone marrow aspirate/biopsy specimen or the biopsy of the cancerous infiltrated by lymphoid malignancies is an emerging technique with enormous interest of research and technological innovation at the current time. In some lymphoid malignancies (particularly ALL), Studies have shown that MRD monitoring of the peripheral blood may be an adequate alternative to frequent BM aspirations. However, additional studies investigating the biology of liquid biopsies in ALL and its potential as an MRD marker in larger patient cohorts in treatment protocols are warranted. Despite the promising data, there are still limitations in liquid biopsies in lymphoid malignancies, such as standardization of the sample collection and processing, determination of timing and duration for liquid biopsy analysis, and definition of the biological characteristics and specificity of the techniques evaluated such as flow cytometry, molecular techniques, and next generation sequencies. The use of liquid biopsy for detection of minimal residual disease in T-cell lymphoma is still experimental but it has made significant progress in multiple myeloma for example. Recent attempt to use artificial intelligence may help simplify the algorithm for testing and may help avoid inter-observer variation and operator dependency in these highly technically demanding testing process.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Joseph Kassab
- Cleveland Clinic, Research Institute, Cleveland, OH, United States
| | - Ludovic Saba
- Department of Hematology-Oncology, Myeloma and Amyloidosis Program, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, United States
| | - Elio Haroun
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, New York, NY, United States
| | | | - Sabine Allam
- Department of Medicine and Medical Sciences, University of Balamand, Balamand, Lebanon
| | - Lewis Nasr
- University of Texas MD Anderson Cancer Center, Texas, TX, United States
| | - Walid Macaron
- University of Texas MD Anderson Cancer Center, Texas, TX, United States
| | - Mahinbanu Mammadli
- Department of Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | | | - Chakra P. Chaulagain
- Department of Hematology-Oncology, Myeloma and Amyloidosis Program, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL, United States
| |
Collapse
|
15
|
Marin AM, Sanchuki HBS, Namur GN, Uno M, Zanette DL, Aoki MN. Circulating Cell-Free Nucleic Acids as Biomarkers for Diagnosis and Prognosis of Pancreatic Cancer. Biomedicines 2023; 11:biomedicines11041069. [PMID: 37189687 DOI: 10.3390/biomedicines11041069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
A lack of reliable early diagnostic tools represents a major challenge in the management of pancreatic cancer (PCa), as the disease is often only identified after it reaches an advanced stage. This highlights the urgent need to identify biomarkers that can be used for the early detection, staging, treatment monitoring, and prognosis of PCa. A novel approach called liquid biopsy has emerged in recent years, which is a less- or non-invasive procedure since it focuses on plasmatic biomarkers such as DNA and RNA. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) have been identified such as DNA, mRNA, and non-coding RNA (miRNA and lncRNA). The presence of these molecules encouraged researchers to investigate their potential as biomarkers. In this article, we focused on circulating cfNAs as plasmatic biomarkers of PCa and analyzed their advantages compared to traditional biopsy methods.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Guilherme Naccache Namur
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| |
Collapse
|
16
|
Hanna M, Dey N, Grady WM. Emerging Tests for Noninvasive Colorectal Cancer Screening. Clin Gastroenterol Hepatol 2023; 21:604-616. [PMID: 36539002 PMCID: PMC9974876 DOI: 10.1016/j.cgh.2022.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is among the most common cancers globally and a major cause of cancer-related deaths. The American Cancer Society estimates that CRC will kill 1 in 60 Americans, and CRC screening is recommended for all Americans ≥45 years of age. Current CRC screening methods are effective for preventing CRC and have been shown to reduce CRC-related mortality. However, none of the currently available tests is ideal, and many people are not compliant with screening recommendations. Novel screening tests based on advances in CRC molecular biology, genetics, and epigenetics, combined with developments in sequencing technologies and computational analytic methods, have been developed to address the shortcomings of current CRC screening tests. These emerging tests include blood-based assays that use plasma-derived circulating tumor DNA and serum proteins to detect early CRC and advanced adenomas, assays that use stool DNA or mRNA, and methods for profiling the gut microbiome. Here we review current screening modalities, and we discuss the principles behind the most promising emerging CRC screening tests and the data supporting their potential to be used in clinical practice.
Collapse
Affiliation(s)
- Marina Hanna
- Department of Medicine, University of Washington, Seattle, Washington
| | - Neelendu Dey
- Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; Microbiome Research Initiative, Fred Hutchinson Cancer Center, Seattle, Washington.
| | - William M Grady
- Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington.
| |
Collapse
|
17
|
An Y, Zhao X, Zhang Z, Xia Z, Yang M, Ma L, Zhao Y, Xu G, Du S, Wu X, Zhang S, Hong X, Jin X, Sun K. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat Commun 2023; 14:287. [PMID: 36653380 PMCID: PMC9849216 DOI: 10.1038/s41467-023-35959-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plasma cell-free DNA (cfDNA) are small molecules generated through a non-random fragmentation procedure. Despite commendable translational values in cancer liquid biopsy, however, the biology of cfDNA, especially the principles of cfDNA fragmentation, remains largely elusive. Through orientation-aware analyses of cfDNA fragmentation patterns against the nucleosome structure and integration with multidimensional functional genomics data, here we report a DNA methylation - nuclease preference - cutting end - size distribution axis, demonstrating the role of DNA methylation as a functional molecular regulator of cfDNA fragmentation. Hence, low-level DNA methylation could increase nucleosome accessibility and alter the cutting activities of nucleases during DNA fragmentation, which further leads to variation in cutting sites and size distribution of cfDNA. We further develop a cfDNA ending preference-based metric for cancer diagnosis, whose performance has been validated by multiple pan-cancer datasets. Our work sheds light on the molecular basis of cfDNA fragmentation towards broader applications in cancer liquid biopsy.
Collapse
Affiliation(s)
- Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xin Zhao
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Ziteng Zhang
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Zhaohua Xia
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Li Ma
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 518107, Shenzhen, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xiang'an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Shuowen Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, China.
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| |
Collapse
|
18
|
Bronkhorst AJ, Ungerer V, Oberhofer A, Holdenrieder S. The rising tide of cell-free DNA profiling: from snapshot to temporal genome analysis. J LAB MED 2022; 46:207-224. [DOI: 10.1515/labmed-2022-0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Abstract
Genomes of diverse origins are continuously shed into human body fluids in the form of fragmented cell-free DNA (cfDNA). These molecules maintain the genetic and epigenetic codes of their originating source, and often carry additional layers of unique information in newly discovered physico-chemical features. Characterization of cfDNA thus presents the opportunity to non-invasively reconstruct major parts of the host- and metagenome in silico. Data from a single specimen can be leveraged to detect a broad range of disease-specific signatures and has already enabled the development of many pioneering diagnostic tests. Moreover, data from serial sampling may allow unparalleled mapping of the scantily explored landscape of temporal genomic changes as it relates to various changes in different physiological and pathological states of individuals. In this review, we explore how this vast dimension of biological information accessible through cfDNA analysis is being tapped towards the development of increasingly powerful molecular assays and how it is shaping emerging technologies. We also discuss how this departure from traditional paradigms of snapshot genetic testing may pave the way for an onrush of new and exciting discoveries in human biology.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Vida Ungerer
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Angela Oberhofer
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| | - Stefan Holdenrieder
- Munich Biomarker Research Center , Institute of Laboratory Medicine , German Heart Centre Munich , Technical University Munich , Munich , Germany
| |
Collapse
|
19
|
Liquid Biopsy and Circulating Biomarkers for the Diagnosis of Precancerous and Cancerous Oral Lesions. Noncoding RNA 2022; 8:ncrna8040060. [PMID: 36005828 PMCID: PMC9414906 DOI: 10.3390/ncrna8040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common malignancies worldwide, accounting for 2% of all cases annually and 1.8% of all cancer deaths. To date, tissue biopsy and histopathological analyses are the gold standard methods for the diagnosis of oral cancers. However, oral cancer is generally diagnosed at advanced stages with a consequent poor 5-year survival (~50%) due to limited screening programs and inefficient physical examination strategies. To address these limitations, liquid biopsy is recently emerging as a novel minimally invasive tool for the early identification of tumors as well as for the evaluation of tumor heterogeneity and prognosis of patients. Several studies have demonstrated that liquid biopsy in oral cancer could be useful for the detection of circulating biomarkers including circulating tumor DNA (ctDNA), microRNAs (miRNAs), proteins, and exosomes, thus improving diagnostic strategies and paving the way to personalized medicine. However, the application of liquid biopsy in oral cancer is still limited and further studies are needed to better clarify its clinical impact. The present manuscript aims to provide an updated overview of the potential use of liquid biopsy as an additional tool for the management of oral lesions by describing the available methodologies and the most promising biomarkers.
Collapse
|
20
|
Integrating chromatin accessibility states in the design of targeted sequencing panels for liquid biopsy. Sci Rep 2022; 12:10447. [PMID: 35729208 PMCID: PMC9213477 DOI: 10.1038/s41598-022-14675-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Dying tumor cells shed DNA fragments into the circulation that are known as circulating tumor DNA (ctDNA). Liquid biopsy tests aim to detect cancer using known markers, including genetic alterations and epigenetic profiles of ctDNA. Despite various advantages, the major limitation remains the low fraction of tumor-originating DNA fragments in a high background of normal blood-cell originating fragments in the cell-free DNA (cfDNA) pool in plasma. Deep targeted sequencing of cfDNA allows for enrichment of fragments in known cancer marker-associated regions of the genome, thus increasing the chances of detecting the low fraction variant harboring fragments. Most targeted sequencing panels are designed to include known recurrent mutations or methylation markers of cancer. Here, we propose the integration of cancer-specific chromatin accessibility states into panel designs for liquid biopsy. Using machine learning approaches, we first identify accessible and inaccessible chromatin regions specific to each major human cancer type. We then introduce a score that quantifies local chromatin accessibility in tumor relative to blood cells and show that this metric can be useful for prioritizing marker regions with higher chances of being detected in cfDNA for inclusion in future panel designs.
Collapse
|
21
|
Yan T, Yu L, Zhang N, Peng C, Su G, Jing Y, Zhang L, Wu T, Cheng J, Guo Q, Shi X, Lu Y. The advanced development of molecular targeted therapy for hepatocellular carcinoma. Cancer Biol Med 2022. [PMID: 35699406 DOI: 10.20892/j.issn.2095-3941.2021.0661.pmid:35699406;pmcid:pmc9257319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common malignant tumors in China, severely threatens the life and health of patients. In recent years, precision medicine, clinical diagnoses, treatments, and innovative research have led to important breakthroughs in HCC care. The discovery of new biomarkers and the promotion of liquid biopsy technologies have greatly facilitated the early diagnosis and treatment of HCC. Progress in targeted therapy and immunotherapy has provided more choices for precise HCC treatment. Multiomics technologies, such as genomics, transcriptomics, and metabolomics, have enabled deeper understanding of the occurrence and development mechanisms, heterogeneity, and genetic mutation characteristics of HCC. The continued promotion and accurate typing of HCC, accurate guidance of treatment, and accurate prognostication have provided more treatment opportunities and prolonged survival timelines for patients with HCC. Innovative HCC research providing an in-depth understanding of the biological characteristics of HCC will be translated into accurate clinical practices for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Tao Yan
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lingxiang Yu
- The Second Department of Hepatobiliary Surgery, Senior Department of Hepatology, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ning Zhang
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Caiyun Peng
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Guodong Su
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yi Jing
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Linzhi Zhang
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Tong Wu
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jiamin Cheng
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qian Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | | | - Yinying Lu
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- National Clinical Medical Research Center for Infectious Diseases, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
22
|
Yan T, Yu L, Zhang N, Peng C, Su G, Jing Y, Zhang L, Wu T, Cheng J, Guo Q, Shi X, Lu Y. The advanced development of molecular targeted therapy for hepatocellular carcinoma. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0661. [PMID: 35699406 PMCID: PMC9257319 DOI: 10.20892/j.issn.2095-3941.2021.0661] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/18/2022] [Indexed: 11/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common malignant tumors in China, severely threatens the life and health of patients. In recent years, precision medicine, clinical diagnoses, treatments, and innovative research have led to important breakthroughs in HCC care. The discovery of new biomarkers and the promotion of liquid biopsy technologies have greatly facilitated the early diagnosis and treatment of HCC. Progress in targeted therapy and immunotherapy has provided more choices for precise HCC treatment. Multiomics technologies, such as genomics, transcriptomics, and metabolomics, have enabled deeper understanding of the occurrence and development mechanisms, heterogeneity, and genetic mutation characteristics of HCC. The continued promotion and accurate typing of HCC, accurate guidance of treatment, and accurate prognostication have provided more treatment opportunities and prolonged survival timelines for patients with HCC. Innovative HCC research providing an in-depth understanding of the biological characteristics of HCC will be translated into accurate clinical practices for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Tao Yan
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lingxiang Yu
- The Second Department of Hepatobiliary Surgery, Senior Department of Hepatology, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Ning Zhang
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Caiyun Peng
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Guodong Su
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Yi Jing
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Linzhi Zhang
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Tong Wu
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jiamin Cheng
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Qian Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | | | - Yinying Lu
- Comprehensive Liver Cancer Center, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- National Clinical Medical Research Center for Infectious Diseases, the 5th Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
23
|
Giron LB, Abdel-Mohsen M. Viral and Host Biomarkers of HIV Remission Post Treatment Interruption. Curr HIV/AIDS Rep 2022; 19:217-233. [PMID: 35438384 DOI: 10.1007/s11904-022-00607-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW HIV rebound/remission after antiretroviral therapy (ART) interruption is likely influenced by (a) the size of the inducible replication-competent HIV reservoir and (b) factors in the host environment that influence immunological pressures on this reservoir. Identifying viral and/or host biomarkers of HIV rebound after ART cessation may improve the safety of treatment interruptions and our understanding of how the viral-host interplay results in post-treatment control. Here we review the predictive and functional significance of recently suggested viral and host biomarkers of time to viral rebound and post-treatment control following ART interruption. RECENT FINDINGS There are currently no validated viral or host biomarkers of viral rebound; however, several biomarkers have been recently suggested. A combination of viral and host factors will likely be needed to predict viral rebound and to better understand the mechanisms contributing to post-treatment control of HIV, critical steps to developing a cure for HIV infection.
Collapse
|
24
|
Lyskjær I, Kara N, De Noon S, Davies C, Rocha AM, Strobl AC, Usher I, Gerrand C, Strauss SJ, Schrimpf D, von Deimling A, Beck S, Flanagan AM. Osteosarcoma: Novel prognostic biomarkers using circulating and cell-free tumour DNA. Eur J Cancer 2022; 168:1-11. [PMID: 35421838 DOI: 10.1016/j.ejca.2022.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023]
Abstract
AIM Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents. Circulating free (cfDNA) and circulating tumour DNA (ctDNA) are promising biomarkers for disease surveillance and prognostication in several cancer types; however, few such studies are reported for OS. The purpose of this study was to discover and validate methylation-based biomarkers to detect plasma ctDNA in patients with OS and explore their utility as prognostic markers. METHODS Candidate CpG markers were selected through analysis of methylation array data for OS, non-OS tumours and germline samples. Candidates were validated in two independent OS datasets (n = 162, n = 107) and the four top-performing markers were selected. Methylation-specific digital droplet PCR (ddPCR) assays were designed and experimentally validated in OS tumour samples (n = 20) and control plasma samples. Finally, ddPCR assays were applied to pre-operative plasma and where available post-operative plasma from 72 patients with OS, and findings correlated with outcome. RESULTS Custom ddPCR assays detected ctDNA in 69% and 40% of pre-operative plasma samples (n = 72), based on thresholds of one or two positive markers respectively. ctDNA was detected in 5/17 (29%) post-operative plasma samples from patients, which in four cases were associated with or preceded disease relapse. Both pre-operative cfDNA levels and ctDNA detection independently correlated with overall survival (p = 0.0015 and p = 0.0096, respectively). CONCLUSION Our findings illustrate the potential of mutation-independent methylation-based ctDNA assays for OS. This study lays the foundation for multi-institutional collaborative studies to explore the utility of plasma-derived biomarkers in the management of OS.
Collapse
Affiliation(s)
- Iben Lyskjær
- Research Department of Pathology, University College London, London, UK; Medical Genomics Research Group, University College London, London, UK
| | - Neesha Kara
- Medical Genomics Research Group, University College London, London, UK
| | - Solange De Noon
- Research Department of Pathology, University College London, London, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Christopher Davies
- Research Department of Pathology, University College London, London, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Ana Maia Rocha
- Research Department of Pathology, University College London, London, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Anna-Christina Strobl
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | - Inga Usher
- Research Department of Pathology, University College London, London, UK
| | - Craig Gerrand
- Bone Tumour Unit, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| | | | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, and CCU Neuropathology, German Cancer Institute, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, and CCU Neuropathology, German Cancer Institute, Heidelberg, Germany
| | - Stephan Beck
- Medical Genomics Research Group, University College London, London, UK
| | - Adrienne M Flanagan
- Research Department of Pathology, University College London, London, UK; Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK.
| |
Collapse
|
25
|
Yue C, Zhang Y, Wang Y, Zhang Z, Zhang M, Wang H, Chen W, Shang Z, Xin Y, Zhang X, Zhang Y. The Application Value of Syndecan-2 Gene Methylation for Colorectal Cancer Diagnosis: A Clinical Study and Meta-Analyses. Front Med (Lausanne) 2022; 9:753545. [PMID: 35372441 PMCID: PMC8964598 DOI: 10.3389/fmed.2022.753545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Syndecan-2 (SDC2) methylation has been previously reported as a sensitive biomarker for the early detection of colorectal cancer (CRC). Droplet digital PCR (ddPCR) is the latest development of PCR technology. It can accurately detect and quantify the target sequence of nucleic acid. ddPCR is widely used in research and clinical diagnosis. In the present study, we aimed to develop a ddPCR method to detect SDC2 gene methylation and evaluate the diagnostic value of SDC2 gene methylation. Methods First, a ddPCR method was developed to measure SDC2 methylation in stool samples collected from 51 cases of normal, 23 cases of adenoma, and 86 cases of CRC. Subsequently, a meta-analysis of existing studies was conducted to judge the diagnostic value of SDC2 gene methylation in CRC. PUBMED, EMBASE, Web of Science, and Scopus databases were searched for relative studies. Meta-analysis was performed using Meta Disc 1.4 and STATA 15.0 software. Results The ddPCR showed that the linearity, sensitivity, and specificity for the detection of SDC2 gene methylation could be down to 0.1% methylation level and 5 ng of methylated DNA input. In 109 cases of CRC, 107 cases could be detected, and the sensitivity was 98.17%. The median value of the percentage of methylated reference (PMR) in colorectal adenoma and CRC patients was significantly higher compared with the normal individuals (p < 0.001). In addition, we found that the PMR value was associated with the clinical staging of CRC. The difference of PMR in stage II and stage IIIA was statistically significant (p < 0.05). Moreover, the meta-analysis showed that 11 out of 87 studies were identified to report the feasibility of SDC2 gene methylation as a method to diagnose early CRC. The pooled sensitivity and specificity of SDC2 gene methylation test for CRC were 0.80 [95% CI (0.68–0.88)] and 0.93 [95% CI (0.91–0.94)], respectively. The pooled diagnostic odds ratio (DOR) and area under curve (AUC) were 52.46 [95% CI (30.43–90.45)] and 0.94 [95% CI (0.92, 0.96)], respectively. Conclusions The ddPCR method was more sensitive and convenient to detect SDC2 gene methylation, and the pooled analysis showed that methylated SDC2 was a valuable biomarker for the non-invasive detection of CRC.
Collapse
Affiliation(s)
- Congbo Yue
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yaping Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yanlei Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | | | - Mengjiao Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Huayang Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Wendan Chen
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Ziqi Shang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yiwei Xin
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
26
|
Challenges in promoter methylation analysis in the new era of translational oncology: a focus on liquid biopsy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166390. [PMID: 35296416 DOI: 10.1016/j.bbadis.2022.166390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Toward the discovery of novel reliable biomarkers, epigenetic alterations have been repeatedly proposed for the diagnosis and the development of therapeutic strategies against cancer. Indeed, for promoter methylation to actively become a tumor marker for clinical use, it must be combined with a highly informative technology evaluated in an appropriate biospecimen. Methodological standardization related to epigenetic research is, in fact, one of the most challenging tasks. Moreover, tissue-based biopsy is being complemented and, in some cases, replaced by liquid biopsy. This review will highlight the advancements made for both pre-analytical and analytical implementation for the prospective use of methylation biomarkers in clinical settings, with particular emphasis on liquid biopsy.
Collapse
|
27
|
Rozenblit M, Hofstatter E, Liu Z, O'Meara T, Storniolo AM, Dalela D, Singh V, Pusztai L, Levine M. Evidence of accelerated epigenetic aging of breast tissues in patients with breast cancer is driven by CpGs associated with polycomb-related genes. Clin Epigenetics 2022; 14:30. [PMID: 35209953 PMCID: PMC8876160 DOI: 10.1186/s13148-022-01249-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose Age is one of the strongest risk factors for the development of breast cancer, however, the underlying etiology linking age and breast cancer remains unclear. We have previously observed links between epigenetic aging signatures in breast/tumor tissue and breast cancer risk/prevalence. However, these DNA methylation-based aging biomarkers capture diverse epigenetic phenomena and it is not known to what degree they relate to breast cancer risk, and/or progression. Methods Using six epigenetic clocks, we analyzed whether they distinguish normal breast tissue adjacent to tumor (cases) vs normal breast tissue from healthy controls (controls). Results The Levine (p = 0.0037) and Yang clocks (p = 0.023) showed significant epigenetic age acceleration in cases vs controls in breast tissue. We observed that much of the difference between cases and controls is driven by CpGs associated with polycomb-related genes. Thus, we developed a new score utilizing only CpGs associated with polycomb-related genes and demonstrated that it robustly captured epigenetic age acceleration in cases vs controls (p = 0.00012). Finally, we tested whether this same signal could be seen in peripheral blood. We observed no difference in cases vs. controls and no correlation between matched tissue/blood samples, suggesting that peripheral blood is not a good surrogate marker for epigenetic age acceleration. Conclusions Moving forward, it will be critical for studies to elucidate whether epigenetic age acceleration in breast tissue precedes breast cancer diagnosis and whether methylation changes at CpGs associated with polycomb-related genes can be used to assess the risk of developing breast cancer among unaffected individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01249-z.
Collapse
Affiliation(s)
- Mariya Rozenblit
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06511, USA.
| | - Erin Hofstatter
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06511, USA
| | - Zuyun Liu
- Department of Big Data in Health Science, School of Public Health and Center for Clinical Big Data and Analytics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tess O'Meara
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06511, USA
| | - Anna Maria Storniolo
- Department of Internal Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Disha Dalela
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06511, USA
| | - Vineet Singh
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06511, USA
| | - Lajos Pusztai
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06511, USA
| | - Morgan Levine
- Department of Pathology, Yale School of Medicine, 330 Cedar Street, New Haven, CT, 06511, USA
| |
Collapse
|
28
|
Galow AM, Peleg S. How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells 2022; 11:468. [PMID: 35159278 PMCID: PMC8915189 DOI: 10.3390/cells11030468] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic alterations pose one major hallmark of organismal aging. Here, we provide an overview on recent findings describing the epigenetic changes that arise during aging and in related maladies such as neurodegeneration and cancer. Specifically, we focus on alterations of histone modifications and DNA methylation and illustrate the link with metabolic pathways. Age-related epigenetic, transcriptional and metabolic deregulations are highly interconnected, which renders dissociating cause and effect complicated. However, growing amounts of evidence support the notion that aging is not only accompanied by epigenetic alterations, but also at least in part induced by those. DNA methylation clocks emerged as a tool to objectively determine biological aging and turned out as a valuable source in search of factors positively and negatively impacting human life span. Moreover, specific epigenetic signatures can be used as biomarkers for age-associated disorders or even as targets for therapeutic approaches, as will be covered in this review. Finally, we summarize recent potential intervention strategies that target epigenetic mechanisms to extend healthy life span and provide an outlook on future developments in the field of longevity research.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao 266071, China
| |
Collapse
|
29
|
Tomeva E, Switzeny OJ, Heitzinger C, Hippe B, Haslberger AG. Comprehensive Approach to Distinguish Patients with Solid Tumors from Healthy Controls by Combining Androgen Receptor Mutation p.H875Y with Cell-Free DNA Methylation and Circulating miRNAs. Cancers (Basel) 2022; 14:cancers14020462. [PMID: 35053623 PMCID: PMC8774173 DOI: 10.3390/cancers14020462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Liquid biopsy-based tests emerge progressively as an important tool for cancer diagnostics and management. Currently, researchers focus on a single biomarker type and one tumor entity. This study aimed to create a multi-analyte liquid biopsy test for the simultaneous detection of several solid cancers. For this purpose, we analyzed cell-free DNA (cfDNA) mutations and methylation, as well as circulating miRNAs (miRNAs) in plasma samples from 97 patients with cancer (20 bladder, 9 brain, 30 breast, 28 colorectal, 29 lung, 19 ovarian, 12 pancreas, 27 prostate, 23 stomach) and 15 healthy controls via real-time qPCR. Androgen receptor p.H875Y mutation (AR) was detected for the first time in bladder, lung, stomach, ovarian, brain, and pancreas cancer, all together in 51.3% of all cancer samples and in none of the healthy controls. A discriminant function model, comprising cfDNA mutations (COSM10758, COSM18561), cfDNA methylation markers (MLH1, MDR1, GATA5, SFN) and miRNAs (miR-17-5p, miR-20a-5p, miR-21-5p, miR-26a-5p, miR-27a-3p, miR-29c-3p, miR-92a-3p, miR-101-3p, miR-133a-3p, miR-148b-3p, miR-155-5p, miR-195-5p) could further classify healthy and tumor samples with 95.4% accuracy, 97.9% sensitivity, 80% specificity. This multi-analyte liquid biopsy-based test may help improve the simultaneous detection of several cancer types and underlines the importance of combining genetic and epigenetic biomarkers.
Collapse
Affiliation(s)
- Elena Tomeva
- HealthBioCare GmbH, A-1090 Vienna, Austria; (E.T.); (O.J.S.); (B.H.)
| | | | - Clemens Heitzinger
- Center for Artificial Intelligence and Machine Learning (CAIML), TU Wien, A-1040 Vienna, Austria;
| | - Berit Hippe
- HealthBioCare GmbH, A-1090 Vienna, Austria; (E.T.); (O.J.S.); (B.H.)
- Department of Nutritional Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Alexander G. Haslberger
- Department of Nutritional Sciences, University of Vienna, A-1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
30
|
Li L, An Y, Ma L, Yang M, Yuan P, Liu X, Jin X, Zhao Y, Zhang S, Hong X, Sun K. Msuite2: All-in-one DNA methylation data analysis toolkit with enhanced usability and performance. Comput Struct Biotechnol J 2022; 20:1271-1276. [PMID: 35317233 PMCID: PMC8918723 DOI: 10.1016/j.csbj.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
DNA methylation is an important epigenetic regulator that plays crucial roles in various biological processes. Recent developments in experimental approaches and dramatic expansion of sequencing capacities have imposed new challenges in the analysis of large-scale, cross-species DNA methylation data. Hence, user-friendly toolkits with high usability and performance are in urgent need. In this work, we present Msuite2, an easy-to-use, all-in-one, and universal toolkit for DNA methylation data analysis and visualization with high flexibility, usability, and performance. Msuite2 is among the fastest tools in read alignment (in particular, it runs as much as 5x faster than its predecessor, Msuite1) with low computing resource usage. In addition, Msuite2 shows both balanced and high performance in terms of mapping efficiency and accuracy, demonstrating high potential to facilitate the investigation and application of large-scale DNA methylation analysis in various biomedical studies. Msuite2 is freely available at https://github.com/hellosunking/Msuite2/.
Collapse
|
31
|
Bunnik EM, Bolt IL. Exploring the Ethics of Implementation of Epigenomics Technologies in Cancer Screening: A Focus Group Study. Epigenet Insights 2021; 14:25168657211063618. [PMID: 34917888 PMCID: PMC8669112 DOI: 10.1177/25168657211063618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/06/2021] [Indexed: 12/04/2022] Open
Abstract
New epigenomics technologies are being developed and used for the detection and prediction of various types of cancer. By allowing for timely intervention or preventive measures, epigenomics technologies show promise for public health, notably in population screening. In order to assess whether implementation of epigenomics technologies in population screening may be morally acceptable, it is important to understand – in an early stage of development – ethical and societal issues that may arise. We held 3 focus groups with experts in science and technology studies (STS) (n = 13) in the Netherlands, on 3 potential future applications of epigenomic technologies in screening programmes of increasing scope: cervical cancer, female cancers and ‘global’ cancer. On the basis of these discussions, this paper identifies ethical issues pertinent to epigenomics-based population screening, such as risk communication, trust and public acceptance; personal responsibility, stigmatisation and societal pressure, and data protection and data governance. It also points out how features of epigenomics (eg, modifiability) and changing concepts (eg, of cancer) may challenge the existing evaluative framework for screening programmes. This paper aims to anticipate and prepare for future ethical challenges when epigenomics technologies can be tested and introduced in public health settings.
Collapse
Affiliation(s)
- Eline M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ineke Lle Bolt
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Fernandes MGO, Cruz-Martins N, Machado JC, Costa JL, Hespanhol V. The value of cell-free circulating tumour DNA profiling in advanced non-small cell lung cancer (NSCLC) management. Cancer Cell Int 2021; 21:675. [PMID: 34915883 PMCID: PMC8680243 DOI: 10.1186/s12935-021-02382-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
AbstractLiquid biopsy (LB) has boosted a remarkable change in the management of cancer patients by contributing to tumour genomic profiling. Plasma circulating cell-free tumour DNA (ctDNA) is the most widely searched tumour-related element for clinical application. Specifically, for patients with lung cancer, LB has revealed valuable to detect the diversity of targetable genomic alterations and to detect and monitor the emergence of resistance mechanisms. Furthermore, its non-invasive nature helps to overcome the difficulty in obtaining tissue samples, offering a comprehensive view about tumour diversity. However, the use of the LB to support diagnostic and therapeutic decisions still needs further clarification. In this sense, this review aims to provide a critical view of the clinical importance of plasma ctDNA analysis, the most widely applied LB, and its limitations while anticipating concepts that will intersect the present and future of LB in non-small cell lung cancer patients.
Graphical Abstract
Collapse
|
33
|
Larribère L, Martens UM. Advantages and Challenges of Using ctDNA NGS to Assess the Presence of Minimal Residual Disease (MRD) in Solid Tumors. Cancers (Basel) 2021; 13:5698. [PMID: 34830853 PMCID: PMC8616165 DOI: 10.3390/cancers13225698] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
The ability to detect minimal residual disease (MRD) after a curative-intent surgery or treatment is of paramount importance, because it offers the possibility to help guide the clinical decisions related adjuvant therapy. Thus, the earlier MRD is detected, the earlier potentially beneficial treatment can be proposed to patients who might need it. Liquid biopsies, and in particular the next-generation sequencing of circulating tumor DNA (ctDNA) in the blood, have been the focus of an increasing amount of research in the past years. The ctDNA detection at advanced cancer stages is practicable for several solid tumors, and complements molecular information on acquired therapy resistance. In the context of MRD, it is by definition more challenging to detect ctDNA, but it is technically achievable and provides information on treatment response and probability of relapse significantly earlier than standard imaging methods. The clinical benefit of implementing this new technique in the routine is being tested in interventional clinical trials at the moment. We propose here an update of the current use of ctDNA detection by NGS as a tool to assess the presence of MRD and improve adjuvant treatment of solid tumors. We also discuss the main limitations and medium-term perspectives of this process in the clinic.
Collapse
Affiliation(s)
- Lionel Larribère
- Department of Hematology and Oncology, Cancer Center Heilbronn-Franken, SLK Clinics Heilbronn GmbH, 74078 Heilbronn, Germany;
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Uwe M. Martens
- Department of Hematology and Oncology, Cancer Center Heilbronn-Franken, SLK Clinics Heilbronn GmbH, 74078 Heilbronn, Germany;
- MOLIT Institute for Personalized Medicine GmbH, 74076 Heilbronn, Germany
| |
Collapse
|
34
|
Albulescu A, Plesa A, Fudulu A, Iancu IV, Anton G, Botezatu A. Epigenetic approaches for cervical neoplasia screening (Review). Exp Ther Med 2021; 22:1481. [PMID: 34765022 PMCID: PMC8576616 DOI: 10.3892/etm.2021.10916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) infection is the leading cause of cervical cancer. The Papanicolaou cytology test is the usually employed type of screening for this infection; however, its sensibility is limited. Only a small percentage of women infected with high-risk HPV develop cervical cancer with an array of genetic and epigenetic modifications. Thus, it is necessary to develop rapid, reproducible and minimally invasive technologies for screening. DNA methylation has gained attention as an alternative method for molecular diagnosis and prognosis in HPV infection. The aim of the present review was to highlight the potential of DNA methylation in cervical neoplasia screening for clinical applications. It was observed that the methylation human and viral genes was correlated with high-grade lesions and cancer. Methylation biomarkers have shown a good capacity to discriminate between high-grade lesions with a transformative potential and cervical cancer, being able to detect these modifications at an early stage. With further research, the epigenetic profiles and subtypes of the tumors could be elaborated, which would aid in therapy selection by opening avenues in personalized precision medicine. Response to therapy could also be evaluated through such methods and the accessibility of liquid biopsies would allow a constant monitoring of the patient's status without invasive sampling techniques.
Collapse
Affiliation(s)
- Adrian Albulescu
- Department of Molecular Virology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania.,Pharmacology Department, National Institute for Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Adriana Plesa
- Department of Molecular Virology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Alina Fudulu
- Department of Molecular Virology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Iulia Virginia Iancu
- Department of Molecular Virology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Gabriela Anton
- Department of Molecular Virology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| | - Anca Botezatu
- Department of Molecular Virology, Stefan S. Nicolau Institute of Virology, Bucharest 030304, Romania
| |
Collapse
|
35
|
Huang J, Soupir AC, Schlick BD, Teng M, Sahin IH, Permuth JB, Siegel EM, Manley BJ, Pellini B, Wang L. Cancer Detection and Classification by CpG Island Hypermethylation Signatures in Plasma Cell-Free DNA. Cancers (Basel) 2021; 13:cancers13225611. [PMID: 34830765 PMCID: PMC8616264 DOI: 10.3390/cancers13225611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary The detection of DNA methylation changes in blood has emerged as a promising approach for cancer diagnosis and management. Our group has previously optimized a blood DNA methylation profiling technology that is based on affinity capture of methylated DNA, termed cfMBD-seq. The aim of this study was to assess the potential clinical feasibility of cfMBD-seq. We applied cfMBD-seq to the blood samples of cancer patients and identified methylation signatures that can not only discriminate cancer patients from cancer-free individuals but can also enable accurate multi-cancer classification. Our findings will help to expand on existing blood-based molecular diagnostic tests and identify novel methylation biomarkers for early cancer detection and classification. Abstract Cell-free DNA (cfDNA) methylation has emerged as a promising biomarker for early cancer detection, tumor type classification, and treatment response monitoring. Enrichment-based cfDNA methylation profiling methods such as cfMeDIP-seq have shown high accuracy in the classification of multiple cancer types. We have previously optimized another enrichment-based approach for ultra-low input cfDNA methylome profiling, termed cfMBD-seq. We reported that cfMBD-seq outperforms cfMeDIP-seq in the enrichment of high-CpG-density regions, such as CpG islands. However, the clinical feasibility of cfMBD-seq is unknown. In this study, we applied cfMBD-seq to profiling the cfDNA methylome using plasma samples from cancer patients and non-cancer controls. We identified 1759, 1783, and 1548 differentially hypermethylated CpG islands (DMCGIs) in lung, colorectal, and pancreatic cancer patients, respectively. Interestingly, the vast majority of DMCGIs were overlapped with aberrant methylation changes in corresponding tumor tissues, indicating that DMCGIs detected by cfMBD-seq were mainly driven by tumor-specific DNA methylation patterns. From the overlapping DMCGIs, we carried out machine learning analyses and identified a set of discriminating methylation signatures that had robust performance in cancer detection and classification. Overall, our study demonstrates that cfMBD-seq is a powerful tool for sensitive detection of tumor-derived epigenomic signals in cfDNA.
Collapse
Affiliation(s)
- Jinyong Huang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.H.); (A.C.S.)
| | - Alex C. Soupir
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.H.); (A.C.S.)
| | - Brian D. Schlick
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Ibrahim H. Sahin
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Jennifer B. Permuth
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.B.P.); (E.M.S.)
| | - Erin M. Siegel
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.B.P.); (E.M.S.)
| | - Brandon J. Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Bruna Pellini
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (B.P.); (L.W.)
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.H.); (A.C.S.)
- Correspondence: (B.P.); (L.W.)
| |
Collapse
|
36
|
Liu H. An Innovative Integrative Method for Bladder Cancer Diagnosis. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Hao Liu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
37
|
Zhang Y, Liu Z, Ji K, Li X, Wang C, Ren Z, Liu Y, Chen X, Han X, Meng L, Li L, Li Z. Clinical Application Value of Circulating Cell-free DNA in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:736330. [PMID: 34660697 PMCID: PMC8511426 DOI: 10.3389/fmolb.2021.736330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Due to late diagnosis, early intrahepatic metastasis and nonresponse to systemic treatments, surgical resection and/or biopsy specimens remain the gold standard for disease staging, grading and clinical decision-making. Since only a small amount of tissue was obtained in a needle biopsy, the conventional tissue biopsy is unable to represent tumor heterogeneity in HCC. For this reason, it is imperative to find a new non-invasive and easily available diagnostic tool to detect HCC at an early stage and to monitor HCC recurrence. The past decade has witnessed considerable evolution in the development of liquid biopsy technologies with the emergence of next-generation sequencing. As a liquid biopsy approach, molecular analysis of cell-free DNA (cfDNA), characterized by noninvasiveness and real-time analysis, may accurately represent the tumor burden and comprehensively reflect genetic profile of HCC. Therefore, cfDNA may be used clinically as a predictive biomarker in early diagnosis, outcome assessment, and even molecular typing. In this review, we provide an update on the recent advances made in clinical applications of cfDNA in HCC.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Kun Ji
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infections Disease, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinju Chen
- First Ward of Spleen, Stomach, Liver and Gall, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Lingfang Meng
- Department of Ultrasound, Zhengzhou Sixth People's Hospital, Henan Infectious Disease Hospital, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
38
|
Lobo J, van Zogchel LMJ, Nuru MG, Gillis AJM, van der Schoot CE, Tytgat GAM, Looijenga LHJ. Combining Hypermethylated RASSF1A Detection Using ddPCR with miR-371a-3p Testing: An Improved Panel of Liquid Biopsy Biomarkers for Testicular Germ Cell Tumor Patients. Cancers (Basel) 2021; 13:5228. [PMID: 34680375 PMCID: PMC8534014 DOI: 10.3390/cancers13205228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
The classical serum tumor markers used routinely in the management of testicular germ cell tumor (TGCT) patients-alpha fetoprotein (AFP) and human chorionic gonadotropin (HCG)-show important limitations. miR-371a-3p is the most recent promising biomarker for TGCTs, but it is not sufficiently informative for detection of teratoma, which is therapeutically relevant. We aimed to test the feasibility of hypermethylated RASSF1A (RASSF1AM) detected in circulating cell-free DNA as a non-invasive diagnostic marker of testicular germ cell tumors, combined with miR-371a-3p. A total of 109 serum samples of patients and 29 sera of healthy young adult males were included, along with representative cell lines and tumor tissue samples. We describe a novel droplet digital polymerase chain reaction (ddPCR) method for quantitatively assessing RASSF1AM in liquid biopsies. Both miR-371a-3p (sensitivity = 85.7%) and RASSF1AM (sensitivity = 86.7%) outperformed the combination of AFP and HCG (sensitivity = 65.5%) for TGCT diagnosis. RASSF1AM detected 88% of teratomas. In this representative cohort, 14 cases were negative for miR-371a-3p, all of which were detected by RASSF1AM, resulting in a combined sensitivity of 100%. We have described a highly sensitive and specific panel of biomarkers for TGCT patients, to be validated in the context of patient follow-up and detection of minimal residual disease.
Collapse
Affiliation(s)
- João Lobo
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (L.M.J.v.Z.); (A.J.M.G.)
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Lieke M. J. van Zogchel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (L.M.J.v.Z.); (A.J.M.G.)
- Department of Experimental Immunohematology, Sanquin Research Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (M.G.N.); (C.E.v.d.S.)
| | - Mohammed G. Nuru
- Department of Experimental Immunohematology, Sanquin Research Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (M.G.N.); (C.E.v.d.S.)
| | - Ad J. M. Gillis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (L.M.J.v.Z.); (A.J.M.G.)
| | - C. Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands; (M.G.N.); (C.E.v.d.S.)
| | - Godelieve A. M. Tytgat
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (L.M.J.v.Z.); (A.J.M.G.)
| | - Leendert H. J. Looijenga
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (J.L.); (L.M.J.v.Z.); (A.J.M.G.)
- Lab. for Exp. Patho-Oncology (LEPO), Department of Pathology, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
39
|
Kerachian MA, Azghandi M, Mozaffari-Jovin S, Thierry AR. Guidelines for pre-analytical conditions for assessing the methylation of circulating cell-free DNA. Clin Epigenetics 2021; 13:193. [PMID: 34663458 PMCID: PMC8525023 DOI: 10.1186/s13148-021-01182-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Methylation analysis of circulating cell-free DNA (cirDNA), as a liquid biopsy, has a significant potential to advance the detection, prognosis, and treatment of cancer, as well as many genetic disorders. The role of epigenetics in disease development has been reported in several hereditary disorders, and epigenetic modifications are regarded as one of the earliest and most significant genomic aberrations that arise during carcinogenesis. Liquid biopsy can be employed for the detection of these epigenetic biomarkers. It consists of isolation (pre-analytical) and detection (analytical) phases. The choice of pre-analytical variables comprising cirDNA extraction and bisulfite conversion methods can affect the identification of cirDNA methylation. Indeed, different techniques give a different return of cirDNA, which confirms the importance of pre-analytical procedures in clinical diagnostics. Although novel techniques have been developed for the simplification of methylation analysis, the process remains complex, as the steps of DNA extraction, bisulfite treatment, and methylation detection are each carried out separately. Recent studies have noted the absence of any standard method for the pre-analytical processing of methylated cirDNA. We have therefore conducted a comprehensive and systematic review of the important pre-analytical and analytical variables and the patient-related factors which form the basis of our guidelines for analyzing methylated cirDNA in liquid biopsy.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alain R Thierry
- IRCM, Institute of Research in Oncology of Montpellier, Montpellier, France.
- INSERM, U1194, Montpellier, France.
- University of Montpellier, Montpellier, France.
- ICM, Regional Institute of Cancer of Montpellier, Montpellier, France.
| |
Collapse
|
40
|
Perales S, Torres C, Jimenez-Luna C, Prados J, Martinez-Galan J, Sanchez-Manas JM, Caba O. Liquid biopsy approach to pancreatic cancer. World J Gastrointest Oncol 2021; 13:1263-1287. [PMID: 34721766 PMCID: PMC8529923 DOI: 10.4251/wjgo.v13.i10.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to pose a major clinical challenge. There has been little improvement in patient survival over the past few decades, and it is projected to become the second leading cause of cancer mortality by 2030. The dismal 5-year survival rate of less than 10% after the diagnosis is attributable to the lack of early symptoms, the absence of specific biomarkers for an early diagnosis, and the inadequacy of available chemotherapies. Most patients are diagnosed when the disease has already metastasized and cannot be treated. Cancer interception is vital, actively intervening in the malignization process before the development of a full-blown advanced tumor. An early diagnosis of PC has a dramatic impact on the survival of patients, and improved techniques are urgently needed to detect and evaluate this disease at an early stage. It is difficult to obtain tissue biopsies from the pancreas due to its anatomical position; however, liquid biopsies are readily available and can provide useful information for the diagnosis, prognosis, stratification, and follow-up of patients with PC and for the design of individually tailored treatments. The aim of this review was to provide an update of the latest advances in knowledge on the application of carbohydrates, proteins, cell-free nucleic acids, circulating tumor cells, metabolome compounds, exosomes, and platelets in blood as potential biomarkers for PC, focusing on their clinical relevance and potential for improving patient outcomes.
Collapse
Affiliation(s)
- Sonia Perales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Carolina Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Joaquina Martinez-Galan
- Department of Medical Oncology, Hospital Universitario Virgen de las Nieves, Granada 18011, Spain
| | | | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| |
Collapse
|
41
|
Barefoot ME, Loyfer N, Kiliti AJ, McDeed AP, Kaplan T, Wellstein A. Detection of Cell Types Contributing to Cancer From Circulating, Cell-Free Methylated DNA. Front Genet 2021; 12:671057. [PMID: 34386036 PMCID: PMC8353442 DOI: 10.3389/fgene.2021.671057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of cellular changes in tissue biopsies has been the basis for cancer diagnostics. However, tissue biopsies are invasive and limited by inaccuracies due to sampling locations, restricted sampling frequency, and poor representation of tissue heterogeneity. Liquid biopsies are emerging as a complementary approach to traditional tissue biopsies to detect dynamic changes in specific cell populations. Cell-free DNA (cfDNA) fragments released into the circulation from dying cells can be traced back to the tissues and cell types they originated from using DNA methylation, an epigenetic regulatory mechanism that is highly cell-type specific. Decoding changes in the cellular origins of cfDNA over time can reveal altered host tissue homeostasis due to local cancer invasion and metastatic spread to distant organs as well as treatment responses. In addition to host-derived cfDNA, changes in cancer cells can be detected from cell-free, circulating tumor DNA (ctDNA) by monitoring DNA mutations carried by cancer cells. Here, we will discuss computational approaches to identify and validate robust biomarkers of changed tissue homeostasis using cell-free, methylated DNA in the circulation. We highlight studies performing genome-wide profiling of cfDNA methylation and those that combine genetic and epigenetic markers to further identify cell-type specific signatures. Finally, we discuss opportunities and current limitations of these approaches for implementation in clinical oncology.
Collapse
Affiliation(s)
- Megan E. Barefoot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amber J. Kiliti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - A. Patrick McDeed
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, United States
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
42
|
Wang D, O'Rourke D, Sanchez-Garcia JF, Cai T, Scheuenpflug J, Feng Z. Development of a liquid biopsy based purely quantitative digital droplet PCR assay for detection of MLH1 promoter methylation in colorectal cancer patients. BMC Cancer 2021; 21:797. [PMID: 34243735 PMCID: PMC8272385 DOI: 10.1186/s12885-021-08497-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/11/2021] [Indexed: 01/05/2023] Open
Abstract
Background MutL Homolog 1 (MLH1) promotor methylation is associated with microsatellite instability high colorectal cancer (CRC). The strong correlation between methylation status and cancer development and progression has led to a growing interest in the use of methylation markers in circulating tumor DNA (ctDNA) for early cancer detection and longitudinal monitoring. As cancer-specific DNA methylation changes in body fluids are limited, it is particularly challenging to develop clinically applicable liquid biopsy methodologies with high sensitivity and specificity. The purpose of this study was to develop a fit-for-purpose methylation sensitive restriction enzyme (MSRE) based digital droplet PCR (ddPCR) assay to examine MLH1 promoter methylation in ctDNA in advanced CRC. Methods Primers and probes were designed to amplify CpG sites of the MLH1 promoter. Methylated and unmethylated control genomic DNA were sheared to mimic ctDNA and subjected to MSRE HpaII digestion. Plasma samples from 20 healthy donors and 28 CRC patients were analyzed with the optimized MSRE procedure using ddPCR. Results Using methylated and unmethylated controls, we optimized the conditions for HpaII enzyme digestion to ensure complete digestion and avoid false positives. Based on the results from the ddPCR assay using 1 ng circulating cell-free DNA (cfDNA) input from healthy donors or CRC samples, ROC curves were generated with an area under the curve (AUC) value of 0.965 (95% CI: 0.94, 0.99). The statistically optimal assay sensitivity and specificity was achieved when 8 positive droplets were used as acceptance criteria (78% sensitivity and 100% specificity, 95% CI: 0.45, 0.95). A tiered-based cutoff (20, 50, 80% percentile based) was applied to distinguish CRC samples with different methylation level. Conclusions Our study demonstrated that the liquid biopsy assay for MLH1 promoter methylation detection using purely quantitative ddPCR is a simple and highly sensitive procedure that provides reliable methylation detection in ctDNA. The MSRE ddPCR approach can also be applied to other genes of interest where methylation patterns could reveal clinically relevant information for future clinical biomarker and/or companion diagnostic development. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08497-x.
Collapse
Affiliation(s)
- Danyi Wang
- Global Clinical Biomarkers and Companion Diagnostics, Global Early Development, EMD Serono Research and Development Institute, Billerica, MA, USA
| | - Dennis O'Rourke
- Global Clinical Biomarkers and Companion Diagnostics, Global Early Development, EMD Serono Research and Development Institute, Billerica, MA, USA
| | - Jorge F Sanchez-Garcia
- Global Clinical Biomarkers and Companion Diagnostics, Global Early Development, EMD Serono Research and Development Institute, Billerica, MA, USA
| | - Ti Cai
- Global Clinical Biomarkers and Companion Diagnostics, Global Early Development, EMD Serono Research and Development Institute, Billerica, MA, USA
| | - Juergen Scheuenpflug
- Global Clinical Biomarkers and Companion Diagnostics, Global Early Development, Merck Biopharma, Merck KGaA, Darmstadt, Germany
| | - Zheng Feng
- Global Clinical Biomarkers and Companion Diagnostics, Global Early Development, EMD Serono Research and Development Institute, Billerica, MA, USA.
| |
Collapse
|
43
|
Circulating Cell-Free DNA as a Prognostic Biomarker in Resectable Ampullary Cancer. Cancers (Basel) 2021; 13:cancers13102313. [PMID: 34065893 PMCID: PMC8151754 DOI: 10.3390/cancers13102313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Circulating cell-free DNA (cfDNA) in patients with ampullary cancer was measured to clarify the correlation between cfDNA and clinicopathological factors and the impact of cfDNA on survival outcomes. The level of cfDNA was significantly higher in patients with lymph node involvement, lymphovascular invasion, abnormal serum carcinoembryonic antigen level, and stage II and III cancer. The 1- and 5-year survival rates were 92.0% and 66.5%, respectively, for patients with low cfDNA levels ≤ 6687 copies/mL as compared with 84.0% and 49.9%, respectively, for patients with high cfDNA levels > 6687 copies/mL (p < 0.001). After multivariate analysis, only the cfDNA level and cancer stage were independent factors in determining the prognosis of the ampullary cancer. The cfDNA level could act as a surrogate marker of both disease extent and biological aggressiveness of ampullary cancer. Moreover, cfDNA plays a significant role in determining the prognosis of resectable ampullary cancer. Abstract Circulating cell-free DNA (cfDNA) in ampullary cancer patients was measured to clarify the correlation between cfDNA and clinicopathological factors and the impact of cfDNA on survival outcomes. Patients with ampullary cancer undergoing pancreaticoduodenectomy were included. Correlations between cfDNA and clinicopathological and prognostic factors were determined. The cfDNA levels in patients ranged from 1282 to 21,674 copies/mL, with a median of 6687 copies/mL. The cfDNA level was significantly higher in patients with lymph node involvement, lymphovascular invasion, abnormal serum carcinoembryonic antigen (CEA) level, and stage II and III cancer. Poor prognostic factors for ampullary cancer included high cfDNA > 6687 copies/mL, lymph node involvement, abnormal serum CEA > 5 ng/mL, and advanced stage II and III cancer. The 1- and 5-year survival rates were 92.0% and 66.5%, respectively, for patients with low cfDNA < 6687 copies/mL and 84.0% and 49.9%, respectively, for patients with high cfDNA > 6687 copies/mL (p < 0.001). After multivariate analysis, only the cfDNA level and stage were independent prognostic factors of ampullary cancer. Thus, the cfDNA level could act as a surrogate marker of both disease extent and biological aggressiveness of ampullary cancer. Moreover, cfDNA plays a significant role in the prognosis of resectable ampullary cancer.
Collapse
|
44
|
Cucchiara F, Petrini I, Romei C, Crucitta S, Lucchesi M, Valleggi S, Scavone C, Capuano A, De Liperi A, Chella A, Danesi R, Del Re M. Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives. Pharmacol Res 2021; 169:105643. [PMID: 33940185 DOI: 10.1016/j.phrs.2021.105643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become a paradigm for precision medicine in oncology, and liquid biopsy (LB) together with radiomics may have a great potential in this scenario. They are both minimally invasive, easy to perform, and can be repeated during patient's follow-up. Also, increasing evidence suggest that LB and radiomics may provide an efficient way to screen and diagnose tumors at an early stage, including the monitoring of any change in the tumor molecular profile. This could allow treatment optimization, improvement of patients' quality of life, and healthcare-related costs reduction. Latest reports on lung cancer patients suggest a combination of these two strategies, along with cutting-edge data analysis, to decode valuable information regarding tumor type, aggressiveness, progression, and response to treatment. The approach seems more compatible with clinical practice than the current standard, and provides new diagnostic companions being able to suggest the best treatment strategy compared to conventional methods. To implement radiomics and liquid biopsy directly into clinical practice, an artificial intelligence (AI)-based system could help to link patients' clinical data together with tumor molecular profiles and imaging characteristics. AI could also solve problems and limitations related to LB and radiomics methodologies. Further work is needed, including new health policies and the access to large amounts of high-quality and well-organized data, allowing a complementary and synergistic combination of LB and imaging, to provide an attractive choice e in the personalized treatment of lung cancer.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Chiara Romei
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Simona Valleggi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa De Liperi
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
45
|
Ruan W, Chen X, Huang M, Wang H, Chen J, Liang Z, Zhang J, Yu Y, Chen S, Xu S, Hu T, Li X, Guo Y, Jiang Z, Chen Z, Huang J, Lin T, Fan JB. A urine-based DNA methylation assay to facilitate early detection and risk stratification of bladder cancer. Clin Epigenetics 2021; 13:91. [PMID: 33902700 PMCID: PMC8072728 DOI: 10.1186/s13148-021-01073-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Background Current non-invasive tests have limited sensitivities and lack capabilities of pre-operative risk stratification for bladder cancer (BC) diagnosis. We aimed to develop and validate a urine-based DNA methylation assay as a clinically feasible test for improving BC detection and enabling pre-operative risk stratifications. Methods A urine-based DNA methylation assay was developed and validated by retrospective single-center studies in patients of suspected BC in Cohort 1 (n = 192) and Cohort 2 (n = 98), respectively. In addition, a prospective single-center study in hematuria patient group (Cohort 3, n = 174) was used as a second validation of the model. Results The assay with a dual-marker detection model showed 88.1% and 91.2% sensitivities, 89.7% and 85.7% specificities in validation Cohort 2 (patients of suspected BC) and Cohort 3 (patients of hematuria), respectively. Furthermore, this assay showed improved sensitivities over cytology and FISH on detecting low-grade tumor (66.7–77.8% vs. 0.0–22.2%, 0.0–22.2%), Ta tumor (83.3% vs. 22.2–41.2%, 44.4–52.9%) and non-muscle invasive BC (NMIBC) (80.0–89.7% vs. 51.5–52.0%, 59.4–72.0%) in both cohorts. The assay also had higher accuracies (88.9–95.8%) in diagnosing cases with concurrent genitourinary disorders as compared to cytology (55.6–70.8%) and FISH (72.2–77.8%). Meanwhile, the assay with a five-marker stratification model identified high-risk NMIBC and muscle invasive BC with 90.5% sensitivity and 86.8% specificity in Cohort 2. Conclusions The urine-based DNA methylation assay represents a highly sensitive and specific approach for BC early-stage detection and risk stratification. It has a potential to be used as a routine test to improve diagnosis and prognosis of BC in clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01073-x.
Collapse
Affiliation(s)
- Weimei Ruan
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Xu Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ming Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hong Wang
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Jiaxin Chen
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Zhixin Liang
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Jingtong Zhang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yanqi Yu
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Shang Chen
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Shizhong Xu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tianliang Hu
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Xia Li
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Yuanjie Guo
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Zeyu Jiang
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Zhiwei Chen
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China. .,AnchorDx, Inc., 46305 Landing Pkwy, Fremont, CA, 94538, USA.
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Jian-Bing Fan
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China. .,Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
46
|
Integrated approaches for precision oncology in colorectal cancer: The more you know, the better. Semin Cancer Biol 2021; 84:199-213. [PMID: 33848627 DOI: 10.1016/j.semcancer.2021.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies accounting for approximately 10 % of worldwide cancer incidence and mortality. While early-stage CRC is mainly a preventable and curable disease, metastatic colorectal cancer (mCRC) remains an unmet clinical need. Moreover, about 25 % of CRC cases are diagnosed only at the metastatic stage. Despite the extensive molecular and functional knowledge on this disease, systemic therapy for mCRC still relies on traditional 5-fluorouracil (5-FU)-based chemotherapy regimens. On the other hand, targeted therapies and immunotherapy have shown effectiveness only in a limited subset of patients. For these reasons, there is a growing need to define the molecular and biological landscape of individual patients to implement novel, rationally driven, tailored therapies. In this review, we explore current and emerging approaches for CRC management such as genomic, transcriptomic and metabolomic analysis, the use of liquid biopsies and the implementation of patients' preclinical avatars. In particular, we discuss the contribution of each of these tools in elucidating patient specific features, with the aim of improving our ability in advancing the diagnosis and treatment of colorectal tumors.
Collapse
|
47
|
Emerging noninvasive methylation biomarkers of cancer prognosis and drug response prediction. Semin Cancer Biol 2021; 83:584-595. [PMID: 33757849 DOI: 10.1016/j.semcancer.2021.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Cancer is the second leading cause of death worldwide being responsible for 9.6 million deaths in 2018. Epigenetic alterations are key in directing the aberrant expression of tumor-associated genes that drive cellular malignant transformation and cancer progression. Among epigenetic alterations, DNA methylation is the most deeply studied one in relation to environmental exposure. Tissue biopsies have traditionally been the main procedure by which a small sample of body tissue is excised to confirm cancer diagnosis or to indicate the primary site when cancer has spread. In contrast, the analysis of circulating tumor-derived material, or tumor circulome, by means of liquid biopsy of peripheral blood, urine, saliva or sputum is a noninvasive, fast and reproducible alternative to tissue biopsy. Recently, the assessment of epigenetic alterations such as DNA methylation and hydroxymethylation in circulating free DNA has been proved possible. These marks can be associated to prognosis and response to a variety of treatments including chemotherapy, hormonotherapy or immunotherapy. Epigenetic biomarkers may offer some advantages over RNA or genetic biomarkers given their stability in bodily fluids and their high tissue-specificity. While many challenges are still ahead, the unique advantages of these types of biomarkers is urging the scientific community to persevere in their clinical validation and integration into reliable prediction models. This review aims at recapitulating the emerging noninvasive DNA methylated biomarkers of importance for prediction of prognosis and drug response in cancer.
Collapse
|
48
|
Huang J, Soupir AC, Wang L. Cell-free DNA methylome profiling by MBD-seq with ultra-low input. Epigenetics 2021; 17:239-252. [PMID: 33724157 DOI: 10.1080/15592294.2021.1896984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Methylation signatures in cell-free DNA (cfDNA) have shown great sensitivity and specificity in the characterization of tumour status and classification of tumour types, as well as the response to therapy and recurrence. Currently, most cfDNA methylation studies are based on bisulphite conversion, especially targeted bisulphite sequencing, while enrichment-based methods such as cfMeDIP-seq are beginning to show potential. Here, we report an enrichment-based ultra-low input cfDNA methylation profiling method using methyl-CpG binding proteins capture, termed cfMBD-seq. We optimized the conditions for cfMBD capture by adjusting the amount of MethylCap protein along with using methylated filler DNA. Our data show high correlation between low input cfMBD-seq and standard MBD-seq (>1000 ng input). When compared to cfMEDIP-seq, cfMBD-seq demonstrates higher sequencing data quality with more sequenced reads passed filter and less duplicate rate. cfMBD-seq also outperforms cfMeDIP-seq in the enrichment of CpG islands. This new bisulphite-free ultra-low input methylation profiling technology has great potential in non-invasive and cost-effective cancer detection and classification.
Collapse
Affiliation(s)
- Jinyong Huang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Alex C Soupir
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
49
|
Robichaud PP, Arseneault M, O'Connell C, Ouellette RJ, Morin PJ. Circulating cell-free DNA as potential diagnostic tools for amyotrophic lateral sclerosis. Neurosci Lett 2021; 750:135813. [PMID: 33705931 DOI: 10.1016/j.neulet.2021.135813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
DNA methylation has garnered much attention in recent years for its diagnostic potential in multiple conditions including cancer and neurodegenerative diseases. Conversely, advances regarding the potential diagnostic relevance of DNA methylation status have been sparse in the field of amyotrophic lateral sclerosis (ALS) even though patients diagnosed with this condition would significantly benefit from improved molecular assays aimed at furthering the current diagnostic and therapeutic options available. This review will provide an overview of the current diagnostic approaches available for ALS diagnosis and discuss the potential clinical usefulness of DNA methylation. We will also present examples of DNA methylation as a diagnostic tool in various types of cancer and neurodegenerative conditions and expand on how circulating cfDNA methylation may be leveraged for the early detection of ALS. In general, this article will reinforce the importance of cfDNA methylation as diagnostic tools and will further highlight its clinical relevance for persons diagnosed with ALS.
Collapse
Affiliation(s)
- Philippe-Pierre Robichaud
- Vitalité Health Network, Dr. Georges-L.-Dumont University Hospital Centre, Department of Genetic Services, 330 Université Ave, Moncton, New Brunswick, E1C 2Z3, Canada; Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada; Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Michael Arseneault
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada
| | - Colleen O'Connell
- Stan Cassidy Centre for Rehabilitation, 800 Priestman Street, Fredericton, New Brunswick, E3B 0C7, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Pavillon Hôtel-Dieu, 35 Providence Street, Moncton, New Brunswick, E1C 8X3, Canada
| | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, New Brunswick, E1A 3E9, Canada.
| |
Collapse
|
50
|
Lobo J, Constâncio V, Guimarães-Teixeira C, Leite-Silva P, Miranda-Gonçalves V, Sequeira JP, Pistoni L, Guimarães R, Cantante M, Braga I, Maurício J, Looijenga LHJ, Henrique R, Jerónimo C. Promoter methylation of DNA homologous recombination genes is predictive of the responsiveness to PARP inhibitor treatment in testicular germ cell tumors. Mol Oncol 2021; 15:846-865. [PMID: 33513287 PMCID: PMC8024740 DOI: 10.1002/1878-0261.12909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common cancers in men aged 15-39 years and are divided into two major groups, seminomas and nonseminomas. Novel treatment options are required for these patients, to limit side effects of chemotherapy. We hypothesized that promoter methylation of relevant homologous recombination (HR) genes might be predictive of response to poly-ADP ribose polymerase inhibitors (PARPis) in TGCTs. We report a study pipeline combining in silico, in vitro, and clinical steps. By using several databases and in silico tools, we identified BRCA1, RAD51C, PALB2, RAD54B, and SYCP3 as the most relevant genes for further investigation and pinpointed specific CpG sites with pronounced negative correlation to gene expression. Nonseminomas displayed significantly higher methylation levels for all target genes, where increased methylation was observed in patients with more differentiated subtypes and higher disease burden. We independently performed second-line targeted validation in tissue series from TGCT patients. A moderate and/or strong anti-correlation between gene expression (assessed by RNA-sequencing) and promoter methylation (assessed by 450k array) was found, for all of the targets. As a proof of concept, we demonstrated the sensitivity of TGCT cell lines to Olaparib, which associated with differential methylation levels of a subset of targets, namely BRCA1 and RAD51C. Our findings support the use of HR genes promoter methylation as a predictor of the therapeutic response to PARPis in patients with TGCT.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Portugal.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal
| | - Catarina Guimarães-Teixeira
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal
| | - Pedro Leite-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal
| | - Laura Pistoni
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Biology, University of Pisa, Italy
| | - Rita Guimarães
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Portugal
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Portugal
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), Portugal
| | | | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P, CCC), Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Portugal
| |
Collapse
|