1
|
Grubb LE, Scandola S, Mehta D, Khodabocus I, Uhrig RG. Quantitative Proteomic Analysis of Brassica Napus Reveals Intersections Between Nutrient Deficiency Responses. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39449274 DOI: 10.1111/pce.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Macronutrients such as nitrogen (N), phosphorus (P), potassium (K) and sulphur (S) are critical for plant growth and development. Field-grown canola (Brassica napus L.) is supplemented with fertilizers to maximize plant productivity, while deficiency in these nutrients can cause significant yield loss. A holistic understanding of the interplay between these nutrient deficiency responses in a single study and canola cultivar is thus far lacking, hindering efforts to increase the nutrient use efficiency of this important oil seed crop. To address this, we performed a comparative quantitative proteomic analysis of both shoot and root tissue harvested from soil-grown canola plants experiencing either nitrogen, phosphorus, potassium or sulphur deficiency. Our data provide critically needed insights into the shared and distinct molecular responses to macronutrient deficiencies in canola. Importantly, we find more conserved responses to the four different nutrient deficiencies in canola roots, with more distinct proteome changes in aboveground tissue. Our results establish a foundation for a more comprehensive understanding of the shared and distinct nutrient deficiency response mechanisms of canola plants and pave the way for future breeding efforts.
Collapse
Affiliation(s)
- L E Grubb
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - S Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - D Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biosystems, KU Leuven, Leuven, Belgium
- Leuven Plant Institute, KU Leuven, Leuven, Belgium
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - I Khodabocus
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Breeding Canola ( Brassica napus L.) for Protein in Feed and Food. PLANTS 2021; 10:plants10102220. [PMID: 34686029 PMCID: PMC8539702 DOI: 10.3390/plants10102220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Interest in canola (Brassica napus L.). In response to this interest, scientists have been tasked with altering and optimizing the protein production chain to ensure canola proteins are safe for consumption and economical to produce. Specifically, the role of plant breeders in developing suitable varieties with the necessary protein profiles is crucial to this interdisciplinary endeavour. In this article, we aim to provide an overarching review of the canola protein chain from the perspective of a plant breeder, spanning from the genetic regulation of seed storage proteins in the crop to advancements of novel breeding technologies and their application in improving protein quality in canola. A review on the current uses of canola meal in animal husbandry is presented to underscore potential limitations for the consumption of canola meal in mammals. General discussions on the allergenic potential of canola proteins and the regulation of novel food products are provided to highlight some of the challenges that will be encountered on the road to commercialization and general acceptance of canola protein as a dietary protein source.
Collapse
|
3
|
Safi A, Medici A, Szponarski W, Martin F, Clément-Vidal A, Marshall-Colon A, Ruffel S, Gaymard F, Rouached H, Leclercq J, Coruzzi G, Lacombe B, Krouk G. GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3881-3901. [PMID: 33758916 PMCID: PMC8096604 DOI: 10.1093/jxb/erab114] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 05/04/2023]
Abstract
Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.
Collapse
Affiliation(s)
- Alaeddine Safi
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Correspondence: or
| | - Anna Medici
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | | | - Florence Martin
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Anne Clément-Vidal
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Amy Marshall-Colon
- New York University, Department of Biology, Center for Genomics & Systems Biology, New York, NY, USA
- Present address: Department of Plant Biology, University of Illinois at Urbana -Champaign, Urbana, IL, USA
| | - Sandrine Ruffel
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Frédéric Gaymard
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Hatem Rouached
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Department of Plant, Soil, and Microbial Sciences, and Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Julie Leclercq
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gloria Coruzzi
- New York University, Department of Biology, Center for Genomics & Systems Biology, New York, NY, USA
| | - Benoît Lacombe
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Correspondence: or
| |
Collapse
|